# INVERTER





# Foreword

Thank you very much for your purchase of ZVF9 series of inverters. This manual introduces the installation, operation, function setting, trouble shooting and etc. of inverters.

Incorrect installation or use may result in damage or other accidents. Do read all instructions in detail before installing or operating.

Please forward this manual to the end user, and keep it handy for quick reference.

If there are any doubts or questions, please contact the Technical Service Center of Company. Table of Contents

# Table of Contents

| Chapter 1 Safety Instruction                                                                                       |           |
|--------------------------------------------------------------------------------------------------------------------|-----------|
| 1.1 Safety Symbols and Definitions                                                                                 |           |
| 1.2 Application Range                                                                                              |           |
| 1.3 Installation Ambient                                                                                           |           |
| 1.4 Cautions for Installing                                                                                        |           |
| 1.5 Cautions for Operation                                                                                         | 5         |
| 1.6 Cautions for Disposing of the Inverter                                                                         |           |
| Chapter 2 Introduction to the Product                                                                              |           |
| 2.1 Product Inspection upon Arrival                                                                                |           |
| 2.2 Diagram of the Model $\cdots$ |           |
| 2.3 Specifications Label                                                                                           |           |
| 2.4 Outline and Structure ··· ··· ··· ··· ··· ··· ··· ··· ··· ·                                                    | 10        |
| 2.5 Models and Specifications                                                                                      | ·13       |
| 2.6 Technical Indications                                                                                          |           |
| Chapter 3 Installation and Wiring                                                                                  | <b>18</b> |
| 3.1 Inverter Mounting                                                                                              | 18        |
| 3.2 Inverter Spare Parts Dismantling and Mounting                                                                  | 20        |
| 3.3 Inverter Wiring                                                                                                | 25        |
| 3.4 Inverter System Wiring                                                                                         | 36        |
| Chapter 4 Operation Panel and its Operation                                                                        | <b>40</b> |
| 4.1 Operation Panel and Instructions                                                                               | 40        |
| 4.2 Display of Monitoring Parameters                                                                               | 47        |
| 4.3 Display of Trouble Parameters                                                                                  | 49        |
|                                                                                                                    |           |

# Table of Contents

| Chapter 5 Operation of the Inverter                         |
|-------------------------------------------------------------|
| 5.1 Trial Operation                                         |
| 5.2 Cautions for Operation                                  |
| 5.3 Operation Examples                                      |
| Chapter 6 Introduction to Function Parameters               |
| 6.1 Schedule of Function Parameters                         |
| 6.2 Detailed Instructions on Function Parameters            |
| Chapter 7Common Problems, Anomalies and Troubleshooting113  |
| 7.1 Diagnostic Trouble Codes and Troubleshooting            |
| 7.2 Anomalies and Solutions116                              |
| Chapter 8 Inverter Inspection and Maintenance 117           |
| 8.1 Inspection and Maintenance                              |
| 8.2 Replacement of Wearing Parts                            |
| 8.3 Storage of Inverter                                     |
| Chapter 9 Outline Dimensions & Mounting Dimensions          |
| 9.1 Inverter Outline Dimensions & Mounting Dimensions122    |
| 9.2 Operator Panel Outline Dimensions & Mounting Dimensions |
| Chapter 10 Quality Warranty                                 |
| 10.1 Inverter Quality Warranty                              |
| Appendices                                                  |
| Appendix 1 Parts Choosing                                   |
| Appendix 2 EMI Prevention                                   |
| Appendix 3 User's Parameter Amendment Record 138            |
| Appendix 4 Warranty                                         |

## **Chapter 1 Safety Instructions**

#### 1.1 Safety Symbols and Definitions

The safety instructions described in this manual are very important. To avoid any error that may result in damage to equipment, injury to personnel or loss of property, do read and clearly understand all of the safety symbols, symbol definitions and be sure to observe the indicated safety instructions below.

| Safety Symbols | Symbol Definitions                                                                                                                                             |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Â              | HIGH VOLTAGE: This symbol indicates hazardous<br>HIGH VOLTAGE. Any incorrect operation may result in<br>serious damage to the equipment or death to personnel. |
| <u>_</u>       | WARNING: This symbol indicates that any incorrect<br>operation can result in damage to the equipment or minor to<br>moderate injury to personnel.              |
| ¥              | CAUTION: This symbol calls your attention to follow the<br>instructions while in operation or in use.                                                          |
|                | TIP: This symbol calls attention to some useful messages for the user.                                                                                         |
| $\bigcirc$     | FORBIDDEN: This symbol indicates anything forbidden to do.                                                                                                     |
| !              | COMPULSORY: This symbol indicates something<br>must do.                                                                                                        |
|                | -1-                                                                                                                                                            |

#### **1.2 Application Range**



• This inverter is applicable to general industrial purpose three-phase AC asynchronic electric motor.



This inverter cannot be used in the equipment that may result in threat or injury to personnel due to inverter trouble or error, such as nuclear power control equipment, aviation equipment, transportation equipment, life supporting system, safety equipment, weapon system and etc. Please consult Ziri
Company before using it for special purpose.
This product is made under strict quality control and supervision. But when used in some key equipment, protective measures should be taken to avoid further extension of accident due to inverter trouble.

#### **1.3 Installation Ambient**

•Be sure to install the inverter in a well-ventilated indoor location. To get the best cooling effect, it is recommended to fix the inverter vertically, and extra ventilation devices are needed when installed horizontally.

●Be sure that the ambient temperature is between -10~450C. If the temperature is higher than 450C, please remove the upper cover. If the temperature is higher than 500C, forced heat radiation or derating is needed from the external. It is

recommended not to use the inverter in such a high temperature.

Otherwise, it may greatly reduce the service life of the inverter.

• The ambient humidity is required to be lower than 90% without



CAUTION

dew condensation. • The inverter shall be installed in a place where the vibration is less than 0.5G. Otherwise, it may fall and cause damage to the equipment. It is also noteworthy that the inverter could not bear any sudden bump.

•The inverter should be kept away from electromagnetic interference (EMI), flammable and explosive ambient.

-2-

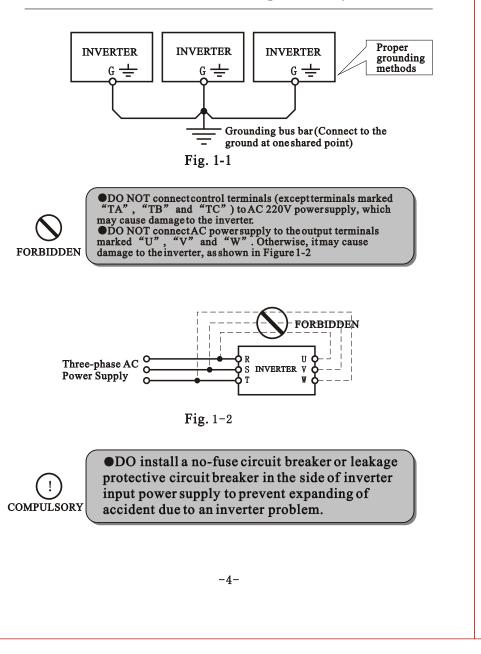


WARNING

Be sure to install the inverter on metallic materials (i.e., metal). Otherwise, there is the danger of fire.
Bu sure not to let the foreign matter enter the inverter, such as wire clippings, spatter from welding, metal shavings and etc. Otherwise, there is the danger of getting burned due to short circuit.

#### 1.4 Cautions for Installing




Do not operate electrical equipment with wet hands.
Do not operate wiring unless the power supply is completely off.
Do not open the front cover or perform wiring while the inverter is powered ON. Otherwise, there is the danger of electric shock.
Do wait at least 10 minutes after the power is disconnected before performing the work of wiring or inspection. Otherwise, there is the danger of electric shock.

Do not installor operate if the inverter is damaged or has parts missing to prevent injury to personnel or loss of property.
The main loop terminal should be tightly connected to the cable. Otherwise, the inverter may be damaged arising from loose connection.

WARNING

•The ground terminal must be reliably and properly grounded to ensure security. To avoid common ground impedance, multipiece inverters should be grounded at one shared point, as shown in Figure 1-1.

#### Chapter 1 Safety Instructions



#### Chapter 1 Safety Instructions

CAUTION

HAZARD

It is notadvisable to install an electromagnetic contactor in the side of output power supply, because the operation of open and close to the contactor when the motor is running may cause damage to the inverter arising from over-voltage produced during this process. But it is still necessary to install a contactor if one of the following threepoints occurs:
The system of frequency converting governor used to control energy-saving usually works at a rated rotation speed. To run the governor economically, there is a must to remove the inverter.
The inverter participates in some import procedure and cannot stop operating for a long period of time. To realize free shift in various control systems and improve the reliability of these systems, there is a must to install a contactor.
When an inverter controls several motors, there is a must to install a contactor.

#### 1.5 Cautions for Operation

Do not operate electrical equipment with wet hands.
An inverter stored for half ayear or longer should be given powerup test before use so that the main circuit filter capacitor could be recovered. When the inverter is in the state of powerup, it is necessary to raise the voltage gradually to the rated value with a voltage regulator. Generally, the charging time should be controlled within 1~2 hours. Otherwise, there is the danger of electric shock or exposure.

• Do not touch the inner side of the inverter while the power is ON, nor put any foreign matter, i.e., rod or other matter inside the inverter. Otherwise, it may result in serious damage to the equipment or death to personnel.

• Do not open the front cover while the inverter is powered ON. Otherwise, there is the danger of electric shock.

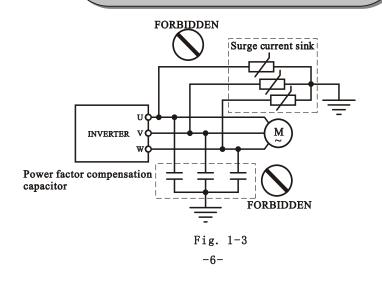
• Be careful to select the Restart Mode. Otherwise, there is the danger of personnel death.

-5-

#### Chapter 1 Safety Instructions

#### Chapter 1 Safety Instructions

• If the inverter runs at a frequency higher than 50Hz, DO confirm it is within the speed range acceptable by your motor bearing and mechanical device. Otherwise, there is the danger of damage to the motor.


•It is notadvisory to run the reduction box, gear and other mechanism that need lubricating at low speed for a long period. Otherwise, it may reduce the service life of these equipment or even damage the equipment.



•Derating should be done before use due to less effective of heat dissipation when ageneral motor runs at a low frequency. If it is a constant torque load, then a forced method or a special variable frequency motor should be used to release heat.

DO cut off the power supply of an inverter set aside for a long time to avoid foreign matter or other things enter in it which may cause damage to the inverter or even lead to fire.
The output voltage of inverter is PWM impulse wave. DO NOT

• The output voltage of inverter is P w M impulse wave. DO NOT install a capacitor or surge currentsink (i.e., a varistor) in the inverter output port. Otherwise, there is the danger of fault tripping of the inverter or damage to its power elements. DO remove such kind of things if already installed. See Figure 1-3 below.

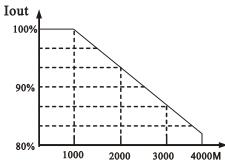
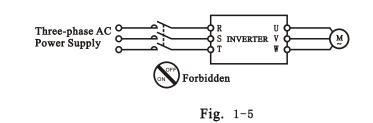


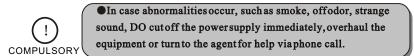
• Motor insulation should be checked before the inverter is used for the first use or reused after a long-term idle. Besure the insulation resistance measured is no lower than  $5\Omega$ If the inverter is used beyond the range of allowable working voltage, then an extra step-up or step-down voltage transformer shall be configured.

Due to thin air in a place where the altitude is higher than 1,000m, the heat dissipation of inverter will be less effective. Hence derating should be done before use. In general, when the height rises by 1,000m, the rated voltage of the inverter shall reduce by 10%. Refer to Figure 1-4 for details of the derating curve.

CAUTION

FORBIDDEN



Fig. 1-4 Diagram of Inverter Derating Curve

•DO NOT touch the radiator or charging resistor of the inverter with hand(s). Otherwise, there is the possibility of getting scalded. •DO NOT proceed direct start-stop operation frequently with a contactor or any other switch devices in the inverter input side. As large charging current exists in the main circuit of the inverter, frequent power-on/offmay produce cumulative effect resulting in heat fatigue of inverter components and great reduction of service life of the inverter. See the detail in Figure 1-5.

-7-







## 1.6 Cautions for Disposing



•Exposure may happen when the electrolytic capacitor (ELCC) of the inverter burns. Be careful to cope with it.

• The plastic parts on the operator panel will give off toxic gas when getting burned. Be careful to cope with it.



• Dispose damaged inverter as industrial waste.

CAUTION

Chapter II. Introduction to the Product

## 2.1 Unpacking and Inspection upon Arrival

This product is guaranteed a high level of quality with strict outgoing inspection, crushproof and shockproof packaging. But this does not preclude damage to the product due to heavy collision or strong extrusion. So it is necessary to unpack the inverter upon arrival and perform these steps:

①Check whether there is a deformed or damaged casing; or any shattered component. ②Check the specifications label of the inverter and make sure it matches the product part number you've ordered.

3Check whether the items in the packing list are in readiness or not.

If there is any problem with the above-mentioned contents, please contact the supplier or Ziri Company immediately.

#### 2.2 Diagram of the Model

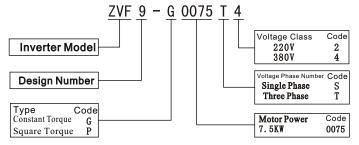
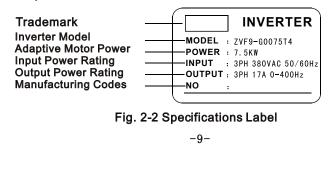



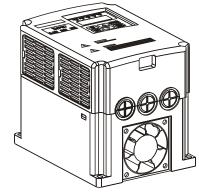
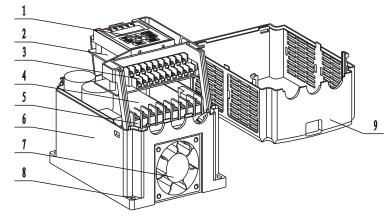

Fig. 2-1 Inverter Model Diagram

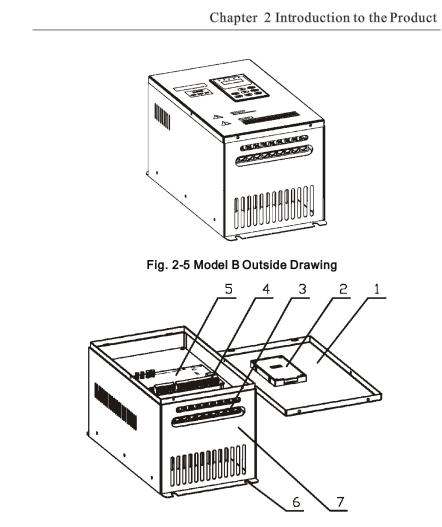
## 2.3 Specifications Label



## Chapter 2 Introduction to the Product

## 2.4 Outside Drawing & Structure



Fig. 2-3 Model A Outside Drawing



1. Operator Panel 2.Control Panel 3. External Control Terminal 4. Main Circuit Board 5. Power Terminal 6. Casing 7. Fan 8. Installation Hole Site 9. Upper Cover

#### Fig. 2-4 Model A Structural Representation

-10-



1.Upper Cover 2. Operator Panel 3. Power Terminal 4. External Control Terminal 5. Control Panel 6. Installation Hole Site 7. Casing

Fig. 2-6 Model B Structural Representation

-11-

٦ Fig. 2-7 Model C Outside Drawing 5

Chapter 2 Introduction to the Product

1.Fan 2. ControlPanel 3.Cabnet Body 4. WiringCopper Bar 5.PowerTerminal
 6. Electrolytic Capacitor(ELCC) 7. OperatorPanel 8. CabinetDoor

Fig. 2-8 Model C Structural Representation

-12-

Chapter 2 Introduction to the Product

## 2.5 Models and Specifications

## Table 2-1 Inverter Models

| Inverter Models<br>(G: Constant Torque Load)<br>(P: Fan or Pump Load) | Input Voltage<br>(V) | Rated Output<br>Current (A) | Adaptive Motor<br>Power (K₩) |
|-----------------------------------------------------------------------|----------------------|-----------------------------|------------------------------|
| ZVF9-G0007T2/S2                                                       | 220                  | 4.0                         | 0.75                         |
| ZVF9-G0015T2/S2                                                       | 220                  | 7.5                         | 1.5                          |
| ZVF9-G0022T2/S2                                                       | 220                  | 10.0                        | 2.2                          |
| ZVF9-G0037T2/S2                                                       | 220                  | 16.5                        | 3.7                          |
| ZVF9-G0055T2                                                          | 220                  | 25                          | 5.5                          |
| ZVF9-G0075T2                                                          | 220                  | 33                          | 7.5                          |
| ZVF9-G0110T2                                                          | 220                  | 49                          | 11                           |
| ZVF9-G0150T2                                                          | 220                  | 65                          | 15                           |
| ZVF9-G0185T2                                                          | 220                  | 75                          | 18.5                         |
| ZVF9-G0220T2                                                          | 220                  | 90                          | 22                           |
| ZVF9-G0007T4                                                          | 380                  | 2.3                         | 0.75                         |
| ZVF9-G0015T4/P0015T4                                                  | 380                  | 3.7                         | 1.5                          |
| ZVF9-G0022T4/P0022T4                                                  | 380                  | 5.0                         | 2.2                          |
| ZVF9-G0037T4/P0037T4                                                  | 380                  | 8.5                         | 3.7                          |
| ZVF9-G0040T4/P0040T4                                                  | 380                  | 10                          | 4.0                          |
| ZVF9-G0055T4/P0055T4                                                  | 380                  | 13                          | 5.5                          |
| ZVF9-G0075T4/P0075T4                                                  | 380                  | 17                          | 7.5                          |
| ZVF9-G0110T4/P0110T4                                                  | 380                  | 25                          | 11                           |
| ZVF9-G0150T4/P0150T4                                                  | 380                  | 33                          | 15                           |
| ZVF9-G0185T4/P0185T4                                                  | 380                  | 39                          | 18.5                         |
| ZVF9-G0220T4/P0220T4                                                  | 380                  | 45                          | 22                           |
| ZVF9-G0300T4/P0300T4                                                  | 380                  | 60                          | 30                           |

| Inverter Models<br>(G: Constant Torque Load)<br>(P: Fan or Pump Load) | Input<br>Voltage<br>(V) | Rated Output<br>Current (A) | Adaptive Motor<br>Power (KW) |
|-----------------------------------------------------------------------|-------------------------|-----------------------------|------------------------------|
| ZVF9-G0370T4/P0370T4                                                  | 380                     | 75                          | 37                           |
| ZVF9-G0450T4/P0450T4                                                  | 380                     | 90                          | 45                           |
| ZVF9-G0550T4/P0550T4                                                  | 380                     | 110                         | 55                           |
| ZVF9-G0750T4/P0750T4                                                  | 380                     | 152                         | 75                           |
| ZVF9-G0900T4/P0900T4                                                  | 380                     | 176                         | 90                           |
| ZVF9-G1100T4/P1100T4                                                  | 380                     | 210                         | 110                          |
| ZVF9-G1320T4/P1320T4                                                  | 380                     | 253                         | 132                          |
| ZVF9-G1600T4/P1600T4                                                  | 380                     | 300                         | 160                          |
| ZVF9-G1850T4/P1850T4                                                  | 380                     | 360                         | 185                          |
| ZVF9-G2000T4/P2000T4                                                  | 380                     | 380                         | 200                          |
| ZVF9-G2200T4/P2200T4                                                  | 380                     | 420                         | 220                          |
| ZVF9-G2500T4/P2500T4                                                  | 380                     | 480                         | 250                          |
| ZVF9-G2800T4/P2800T4                                                  | 380                     | 540                         | 280                          |
| ZVF9-P3150T4                                                          | 380                     | 610                         | 315                          |

-13-

-14-

Chapter 2 Introduction to the Product

## 2.6 Technical Indications

## Table 2-2 Description Summary for Technical Indications

|                         | Item                               | Item Description                                                                                                                                                                                                                                                                                        |
|-------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L                       | Rated Voltage,<br>Frequency        | Single/Three Phase 220 VAC, Three Phase 380 VAC, 50 Hz/60 Hz                                                                                                                                                                                                                                            |
| Input                   | Allowable Voltage<br>Range         | Effective Value of Voltage: 180~230V for Grade 220V;<br>320~460V for Grade 380V                                                                                                                                                                                                                         |
|                         |                                    | Unbalance Value of Voltage: <3%; Frequency Fluctuation: $\leq$ 5%                                                                                                                                                                                                                                       |
| Out                     | Rated Voltage                      | Three Phase: 0~Input Voltage VAC                                                                                                                                                                                                                                                                        |
| Output                  | Frequency                          | 0~400Hz                                                                                                                                                                                                                                                                                                 |
| С                       | verload Capability                 | Model G: Permanent if overload<110%; 1 min if<br>110% <overload<150%; 150%<overload<180%;="" 2="" if="" if<br="" instant="" sec="">overload≥200%.<br/>Model P: 1 min if overload&lt;120%; 1 sec if<br/>120%<overload<150%; if="" instant="" overload≥180%.<="" th=""></overload<150%;></overload<150%;> |
|                         | Modulation System                  | Magnetic Flux Vector Pulse-Width Modulation (PWM)                                                                                                                                                                                                                                                       |
|                         | Regulating Range                   | 1: 100                                                                                                                                                                                                                                                                                                  |
|                         | Frequency Accuracy                 | Digital Setting: Max. Frequency $\times \pm 0.01\%$<br>Analogue Setting: Max. Frequency $\times \pm 0.2\%$                                                                                                                                                                                              |
| Cont                    | Frequency Resolution               | Digital Setting: 0.01Hz;<br>Analogue Setting: Max. Frequency×0.1%                                                                                                                                                                                                                                       |
| rol]                    | Starting Torque                    | 100% rated torqueat 0.50Hz.                                                                                                                                                                                                                                                                             |
| <b>Control Function</b> | Torque Lifting                     | Automatic torque lifting: to lift the torque automatically<br>according to the output current.<br>Hand-operated torque lifting: Range: 1~30%                                                                                                                                                            |
| n                       | Slip Compensation                  | Setting range: 0~20%. The inverter output frequency<br>can be auto-regulated within this range according to the<br>motor load so as to reduce the speed variation of the<br>motor due to load fluctuation.                                                                                              |
|                         | Acceleration/<br>Deceleration time | 0.1~6,000 sec, which can be set in sequence.                                                                                                                                                                                                                                                            |
|                         | Carrier frequency                  | 1.0~13KHz                                                                                                                                                                                                                                                                                               |
|                         | V/E ourse                          | 1.linear curve                                                                                                                                                                                                                                                                                          |
|                         | V/F curve                          | 2.quadratic curve                                                                                                                                                                                                                                                                                       |

|                           | Item                                  | Item Description                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Con                       | Automatic energy-<br>saving operation | Auto optimize V/F curve according to load fluctuation to realize energy-saving operation.                                                                                                                                                                                                                                                                                                                      |
| <b>Control Function</b>   | Auto Voltage<br>Regulation            | When the network voltage changes, it can regulate PWM output automatically to maintain constant voltage.                                                                                                                                                                                                                                                                                                       |
| nction                    | Built-in PID                          | This can form a convenient closed-loop control<br>system (CLCS), and is applicable to pressure control,<br>flow control and other process control.                                                                                                                                                                                                                                                             |
|                           | Operating instruction                 | operator panel control, external terminal control and COM control                                                                                                                                                                                                                                                                                                                                              |
| <b>Operation</b> Function | Frequency setting                     | panel potentiometer setting, operator panel ▲ ▼ setting,<br>external terminal up/down setting, analogue voltage<br>signal or external potentiometer setting, analogue<br>current signal setting, analogue nest setting and 485<br>COM setting.                                                                                                                                                                 |
| ion                       | Input Signal                          | Forward/Reverse signal, multiple speed signal, failure signal, reset signal and etc.                                                                                                                                                                                                                                                                                                                           |
| Fun                       | Output signal                         | programmable open-collector output impedance, failure signal output                                                                                                                                                                                                                                                                                                                                            |
| ction                     | Analogue output<br>terminal           | This can realize the output of DC 0~10V signal, frequency, current and other physical quantity.                                                                                                                                                                                                                                                                                                                |
| Br<br>Fu                  | Dynamic braking                       | With an external braking resistor, the maximum braking torque may reach 100%.                                                                                                                                                                                                                                                                                                                                  |
| Braking<br>Function       | DC braking                            | This can be selected when the motor starts or stops with the action frequency of $0\sim 20$ Hz action voltage level of $0\sim 20\%$ and actuation time of $0\sim 30$ sec., and this value can be set in sequence.                                                                                                                                                                                              |
| 0                         | ther Function                         | Other functions: Leap frequency, jog function, counter,<br>trace to rotating speed, instant shutdown restarting,<br>frequency upper/lower limitation,<br>acceleration/deceleration mode regulating, frequency<br>meter and voltmeter output, multiple speed/program<br>operation, two-wire/three-wire control, dipolar control,<br>multi-function input terminal selection, failure auto<br>reset and 485 COM. |
| Pro                       | tection Function                      | Protection function: input open-phase protection, over-<br>current protection, overload protection, undervoltage<br>protection, overheating protection and etc.                                                                                                                                                                                                                                                |

-15-

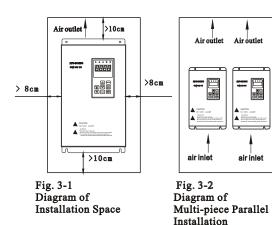
-16-

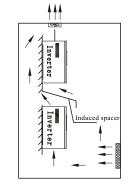
|           | Item                | Item Description                                                                                                                                                                               |
|-----------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | LED display         | Real-time display the running state, monitoring<br>parameters, function parameters, diagnostic trouble<br>codes (DTC) and other information of the inverter.                                   |
|           | Matching parts      | brake assembly, remote operator panel, connecting wire, communication panel                                                                                                                    |
|           | Place to be used    | Indoor location free from direct exposure to sunlight,<br>high humidity or dew condensation, high levels of dust,<br>corrosive gas, explosive gas, inflammable gas, oil mist,<br>salt and etc. |
| Aı        | Altitude            | Below 1,000M                                                                                                                                                                                   |
| Ambient   | Ambient Temperature | -10~+45°C [Bare Machine:-10~+50°C]                                                                                                                                                             |
| ent       | Humidity            | 20~90%RH without dew condensation                                                                                                                                                              |
|           | Vibration           | <0.5G                                                                                                                                                                                          |
|           | Storage Temperature | -20~+60 °C                                                                                                                                                                                     |
|           | Protective Class    | Ip20                                                                                                                                                                                           |
| Stru      | Cooling system      | forced air cooling                                                                                                                                                                             |
| Structure | Installation        | wall mounted or floor-type actuator                                                                                                                                                            |

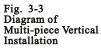
Chapter 3 Inverter Installation and Wiring

## **Chapter 3 Inverter Installation and Wiring**

#### **3.1 Installation**


#### 3.1.1 Use the inverter in the following environmental conditions:


- Altitude: Maximum 1000m above sea level
- Ambient Temperature: -10~+45°C [Bare Machine: -10~+50°C]
- Humidity: 20~90% RH (Non-condensing)


• Ambient: Indoor places free from direct exposure to sunlight, dust, corrosive gas, flammable gas, oil mist, steam, drip and salt.

- Vibration: < 0.5G
- **3.1.2 Installation Space and Direction**

To get better cooling effect and for the convenience of maintenance, the inverter shall be installed vertically with enough space left (refer to Figure 3-1). When two or more inverters are fixed in the same cabinet, it is recommended to fix them in parallel and horizontally to reduce heat produced by them (refer to Figure 3-2). When there is a must to fix them up and down, please fix an insulating board between them so that the heat produced by the lower one could not have direct influence on the upper one (refer to Figure 3-3).







-18-

-17-

#### **3.1.3 Installation Instructions**



Do not install or operate if the inverter is damaged or has parts missing to prevent injury to personnel or loss of property.
 Be sure the main loop terminal should be tightly connected to the cable. Otherwise, the inverter may be damaged arising from loose connection.

•Be sure the ground terminals of the inverter and the motor must be reliably and properly grounded. Multi-piece inverter should be grounded at one shared point.



• Be sure to install a no-fuse circuit breaker or leakage protective circuit breaker in the side of inverter inputpower supply to prevent expanding of accident due to an inverter problem.



• Install the inverter in a proper place with moderate temperature. The higher the ambient temperature is, the shorter the service life of the inverter is.

•Keep any other heat-producing equipment as far away from the inverter as possible. When installing the inverter in an enclosure, maintain the clearance around the inverter and verify the temperature is within the allowable range.

#### -19-


#### **Chapter 3 Inverter Installation and Wiring**

#### 3.2 Parts Dismantling and Installation

3.2.1 Dismantle the upper cover.

1. Dismantle the upper cover of the inverter Model A.

Put a finger into the notch of the lower part of the inverter (as shown in Figure 3-4 where the arrow points), stretch upward for 30~50mm (as shown in Figure 3-5), then push forward to open the upper cover of the inverter.



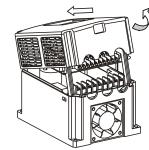



Fig. 3-4 Diagram of dismantling the upper cover of the inverter Model A

Fig. 3-5 Diagram of dismantling the upper cover of the inverter Model A

2. Dismantle the upper cover of the inverter Model B.

Unscrew two screws of the lowerpart of the inverter (as shown in Figure 3-6 where the arrow points), stretchupward for 30~70mm (as shown in Figure 3-7), then push forward to open the upper cover of the inverter.

-20-



Fig. 3-6 Diagram of dismantling the uppercover of the inverter Model B

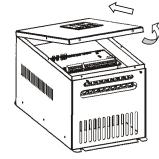



Fig. 3-7 Diagram of dismantling the uppercover of the inverter ModelB

3.2.2 Installation of the remote-controlled operator panel and connecting wire
1. Installation of the operator panel and connecting wire of the inverter Model A
Step 1. Open the upper cover of the inverter (as shown in Figure 3-4 and Figure 3-5).
Step 2. Button up with hand at the chink of the upper part of operator panel and remove the operator panel (as shown in Figure 3-8).

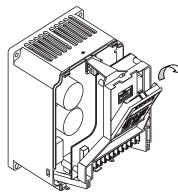



Fig. 3-8 Mounting Diagram of the operator panel and connecting wire of the inverter Model A Step 3. Fix the jack panel provided in the optional components in the installation position of operator panel (as shown in Figure 3-9).

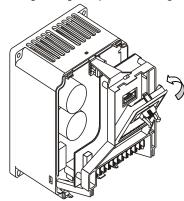



Fig. 3-9 Mounting Diagram of the operator panel and connecting wire of the inverter ModelA -2.1-

#### **Chapter 3 Inverter Installation and Wiring**

Step 4. Install the dismantled upper cover in the previous location, plug the ground end of connecting wire into the slot of jack panel (as shown in Figure 3-10).

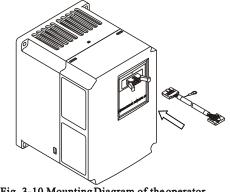



Fig. 3-10 Mounting Diagram of the operator panel and connecting wire of the inverter ModelA

Step 5. Put the dismantled operator panel into the installation frame provided in the optional components, fix and fasten it. Plug the other end of connecting wire into the jack panel slot, and then plug the slot into operator panel (as shown in Figure 3-11).

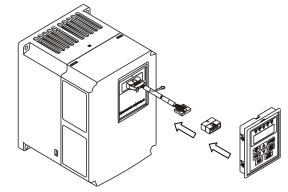



Fig. 3-11 Mounting Diagram of the operator panel and connecting wire of the inverter Model A

-22-

2. Installation of the operator panel and connecting wire of the inverter ModelB:

Step 1. Open the upper cover of the inverter (as shown in Figure 3-6 and Figure 3-7). Step 2. Press the direction that the arrow points to strenuously and push outward to remove the operator panel (as shown in Figure 3-12).

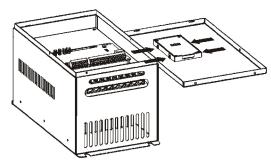



Fig. 3-12 Mounting Diagram of the operator panel and connecting wire of the inverter Model B

Step 3. Plug the connecting wires of the control panel and operator panel into the jack panel provided in the optional components. Put on the upper cover of the inverter, and then fix the jack panel in the installing location of operator panel (as shown in Figure 3-13).

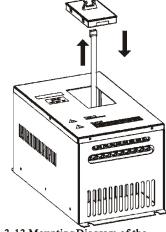



Fig. 3-13 Mounting Diagram of the operator panel and connecting wire of the inverter Model B -2.3-

#### **Chapter 3 Inverter Installation and Wiring**

Step 4. Plug the grounding end of connecting wire into the slot of jackpanel (as shown in Figure 3-14).

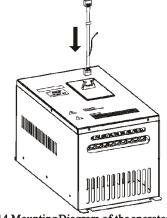
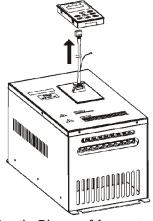
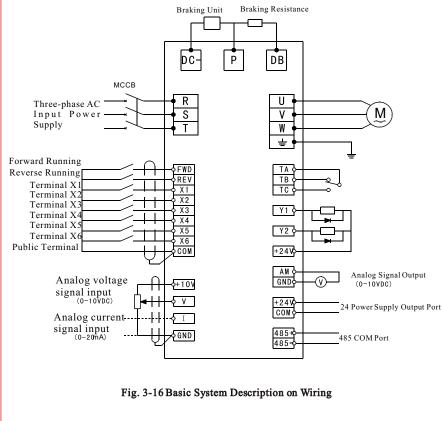
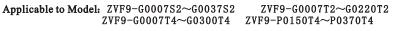


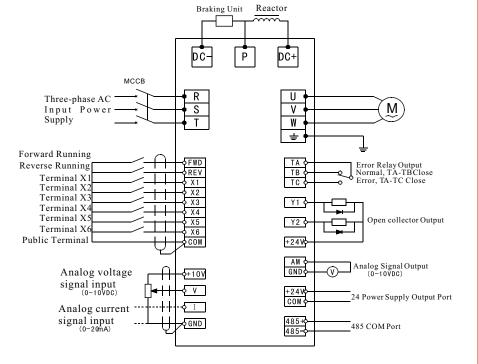

Fig. 3-14 Mounting Diagram of the operator panel and connecting wire of the inverter Model B

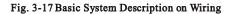
Step 5. Fix and fasten the dismantled operator panel, and put the other end of connecting wire into the socket of operator panel (as shown in Figure 3-15).



Fig. 3-15 Mounting Diagram of the operator panel and connecting wire of the inverter Model B

-24-


## 3.3 Inverter Wiring


#### 3.3.1 Basic System Description on Inverter Wiring











Applicable to Model: ZVF9-G0370T4~G2800T4 ZVF9-P0450T4~P3150T4



-26-

#### 3. 3. 2Cautions for Wiring:

•Wait at least 10 minutes after power OFF before opening the upper cover of the inverter.

•Verify the charge lamp indicator is OFF before proceeding the work, and besure that the voltage value of main loop terminal P and DC is less than 36VDC.

• The internal wiring of the inverter should be operated only by authorized qualified personnel.

•Verify the rated input voltage of the inverter is matched with AC power supply. Otherwise, there is the possibility of damage to the inverter.

•Install in order and only operate wiring after finishing main parts installation. Otherwise, there is an electric shock or damage to the inverter.

•Do not perform over-voltage withstand to the inverter, for this had been done properly before EX-factory.

 $\underline{/!}$ WARNING! •Be sure to install a non-fuse circuit breaker in the input power supply side of the inverter to prevent expanding of accident due to an inverter problem, which may cause damage to the distribution equipment or lead to fire.

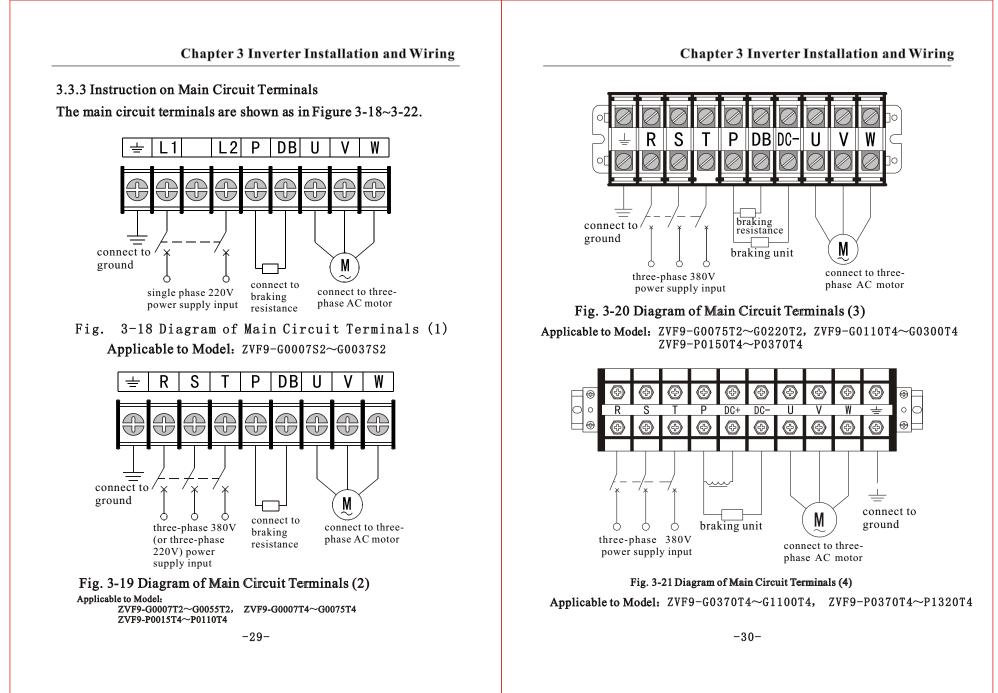
•Be sure to connect the ground terminal and the motor casing to the ground wire which must be copper core. The diameter of the wire should conform to the relevant national standard. The ground resistance should be less than  $10 \Omega$ . FORBIDDEN

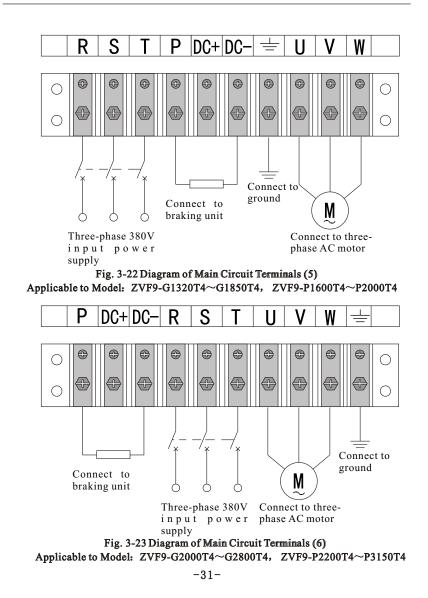
圉

TIPs

•DO NOT connectAC power supply to the output terminals marked, U, V, W, Otherwise, there will be damage to the inverter. •DO NOT connect control terminals (except terminals marked "TA", "TB" and "TC") to AC 220V power supply, which may cause damage to the inverter.

• When the open-ended output terminal of the collector connects to the inductive load, i.e., the relay coil, do insert a diode at each end of the load in parallel.


• The control wire in the inverter or the control cabinet should be at least 100mm away from the power cable. DONOT put them in the same metallic channel. If the signal wire and the power cable intersect, the interference will be smallest if they intersect at an angle of 900. The control wire must adopt STP (shielded twisted pair wire); the shielded layer must connect to the terminal GND; and the power wire is recommended to use metallic shielded cable.


TIPs

• The unavoidable strong electromagnetic interference of the inverter may have bad influence on all the electrical equipment and meters in the same environment. To reduce interference, the output cable of the inverter can be inserted in the metal pipe connecting to the ground or in the metallic shielded cable, and connect the metallic shielded layer to the ground. In addition, a magnetic loop put on the output cable is also effective to reduce interference.

-28-

**Chapter 3 Inverter Installation and Wiring** 





#### **Chapter 3 Inverter Installation and Wiring**

#### 2. Function Description of Main Circuit Terminals

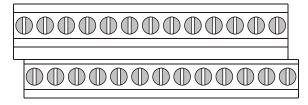
#### Table 3-1 Main Loop Terminals Function Description

| Terminal Signals | Function Description                                                                                                             |
|------------------|----------------------------------------------------------------------------------------------------------------------------------|
| R, S, T          | Power supply input terminals connecting to three-phase 380V<br>or 220VAC input power supply                                      |
| L1、L2            | Power supply input terminals connecting to single phase 220V AC input power supply                                               |
| U, V, W          | Inverter output terminals connecting to three-phase AC motor                                                                     |
| P、DB             | External braking resistance terminals connecting to both ends of external braking resistance                                     |
| P, DC-           | External braking unit terminals; terminal Pconnects to the positive end of the braking unit and DC-connects to the negative end. |
| P、DC+            | External braking Reactor terminals                                                                                               |
| ± G              | Ground terminal orground wire                                                                                                    |

The three-phase input power supply terminals (R, S and T) do not differ on phase sequence and can be connected arbitrarily.
If the motor counter rotates (reverses) when the output terminals U, V and W connect to three-phase motor, just exchange two phases of U, V and W arbitrarily.

•A braking unit is required to be installed inside the inverter under 15KW. If an external braking resistance is required, just connect to the external braking resistance between terminal P and terminal DB.

圉


Tips

•An inverter higher than 18.5KW has no internal braking unit, so it has no DB terminal. If a braking torque is needed, please connect to the external braking units (including braking unit and braking resistance) between P and DC-.

•ZVF9-G1320T4/P1600T4 or even updated model is matched with DC reactor. If an inverter has no internal DC reactor, just fix a DC reactor between P and DC+. When performing this step, it is required to remove the short-circuit ring, then connect to the reactor (applicable to the inverter of 30KW or higher power).

-32-

- 3.3.4 Description on Control Circuit Terminals
- 1. Control circuit terminals shown in Figure 3-23 and 3-24



| ĺ | T/ | ٩ | TE | 3 | T | 2 |     | +1 | 0٧ | ۷  |    | Ι | GΝ | ID | A | M  | Y1   | Y  | 2 | СС | DM | +2 | 4V |    |
|---|----|---|----|---|---|---|-----|----|----|----|----|---|----|----|---|----|------|----|---|----|----|----|----|----|
|   |    | X | 1  | X | 2 | X | 3 0 | OM | X۷ | 1) | (5 | X | 6  | CO | М | FW | D RI | ΞV | C | DM | 48 | 5+ | 48 | 5- |

Fig. 3-23 Control Circuit Terminals (1)

| $\square$ | $\mathbb{D}\mathbb{C}$ | $\mathbb{O}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\square$ | $\square$ | $\square$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|-----------|------------------------|--------------|------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|------------|------------|------------|------------|------------|
|           |                        |              |            |            |            |            |            |            |           |           |           |            |            |            |            |            |
|           |                        |              | 1          |            |            |            |            |            |           |           |           |            | 1          | 1          | 1          | 1          |

X1 X2 X3 COM X4 X5 X6 FWD REV COM Y1 Y2 +24V NC PE TA TB TC

| $\square$ | $\square$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|-----------|-----------|------------|------------|------------|------------|------------|------------|
|           |           |            |            |            |            |            |            |

| +10V | ۷ | Ι | GND | AM | GND | 485+ | 485- |
|------|---|---|-----|----|-----|------|------|
|------|---|---|-----|----|-----|------|------|

Fig. 3-24 Control Circuit Terminals (2)

-33-

**Chapter 3 Inverter Installation and Wiring** 

## 3.3.4 Description on Control Circuit Terminals

#### Table 3-2 Function Description of Control Circuit Terminals

| Types              | Terminal<br>Symbols | Function Description                                                                               | Electrical Specifications                             |  |
|--------------------|---------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|
| Public<br>Port     | COM                 | Numeral Signal Public<br>Terminal                                                                  |                                                       |  |
| Running<br>Control | FWD                 | Forwarding when FWD-<br>COM shortcuts,<br>decelerating and stopping<br>when FWD-COM is open.       | INPUT, 0~24V                                          |  |
| Terminal           | REV                 | Reversing when REV-COM<br>shortcuts, decelerating<br>and stopping when REV-<br>COM is open.        | power level, low<br>level valid, 5mA                  |  |
|                    | X1                  |                                                                                                    |                                                       |  |
| Multi-             | X2                  | Validonly when there is a                                                                          |                                                       |  |
| function           | Х3                  | short-circuit between Xn<br>(n=1, 2, 3, 4, 5, 6) and                                               | INPUT, 0~24 V<br>power level, low<br>level valid, 5mA |  |
| Input<br>Terminal  | X4                  | COM. The functions can<br>be set by the parameter                                                  |                                                       |  |
| Terminar           | X5                  | F111~F116separately.                                                                               |                                                       |  |
|                    | X6                  |                                                                                                    |                                                       |  |
| Multi-<br>function | ¥1                  | Multi-function open-<br>collector output is<br>defined as on-offoutput<br>terminal, whose function | OUTPUT, Maximum                                       |  |
| Output<br>Terminal | Y2                  | is set by the parameter<br>F117~F118 with<br>reference of COM.                                     | Current Load I ≤<br>50mA                              |  |
| 0.11               | PE                  | Ground Terminal                                                                                    |                                                       |  |
| Others             | NC                  | Vacant Terminal                                                                                    |                                                       |  |

-34-

## Table 3-2 Function Description of Control Circuit Terminals

| Types                        | Terminal<br>Symbols | Function Description                                                                                                                                                       | Electrical Specifications                                  |
|------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Public<br>Port               | GND                 | Analog Signal Public<br>Terminal                                                                                                                                           |                                                            |
| Angles                       | +10V                | External analog preset<br>power supply connecting<br>to potentiometer<br>together with terminal<br>GND and V. The frequency<br>can be set as required.                     | INPUT, 10V                                                 |
| Analog<br>Input<br>Terminal  | v                   | Analog voltage<br>signal input, with<br>reference of GND.                                                                                                                  | INPUT, 0~10V                                               |
|                              | I                   | Analog current<br>signal input, with<br>reference of GND                                                                                                                   | INPUT, 0~20mA                                              |
| Analog<br>Output<br>Terminal | AM                  | Analog voltage output connecting<br>to voltmeter or frequency meter<br>with corresponding output<br>ranging from "0" to the<br>maximum frequency, and<br>reference of GND. | OUTPUT, 0~10V                                              |
| Power<br>Supply<br>Interface | +24V                | 24VDC Power SupplyOutput<br>(Control Power Supply)                                                                                                                         | 24VDC-100mA                                                |
| Failure TA output            |                     | Failure relay contact<br>output used to detect the<br>protection function of the                                                                                           |                                                            |
| Terminal                     | ТВ                  | inverter. When the inverter<br>is normal, TA-TB turns on<br>and TA-TC turns off; when<br>the inverter is failure, TA-                                                      | Contact rated value:<br>250VAC-3A<br>250VAC-1A<br>30VDC-1A |
|                              | TC                  | TB turns on and TA-TC turns off.                                                                                                                                           |                                                            |

## Chapter 3 Inverter Installation and Wiring

## 3.4 Wiring Diagram of Inverter System

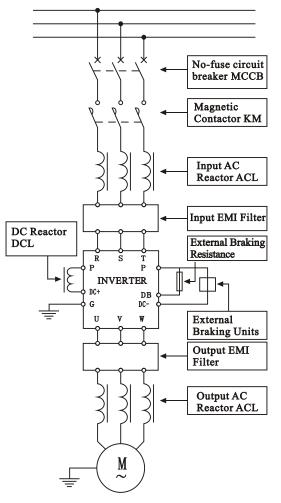



Fig. 4-25 Connection between the Inverter and Optional Accessories

-36-

-35-

Chapter 3 Inverter Installation and Wiring

The circuit breaker has the function of over-current protection, which can avoid extension of external equipment failure. Do pay attention to the capacity of circuit breaker when installing. Refer to Table 3-3 to select the circuit breaker.
The magnetic contactor is used to disconnect from the main power supply in case of inverter failure, and prevent restarting after power-off or inverter failure.
The input AC reactor can reduce influence arising from unbalance of three-phase AC power supply, improve the power factor of the inverter input side and reduce damage to the inverter when it is connected to large capacity motor which may result in damage to the rectifier circuit. It is necessary to configure an AC

reactor when any of the following occurred: ①The power supply unbalance exceeds 3%. ②The power capacity is 500KVA at least and it is 10 times higher

than the inverter capacity. ③The power factor is used to compensate the connection or disconnection of the capacity, and sudden change of network

voltage caused by other reasons. It is recommended to install a reactor with derating voltage of 3%.

• The input and output EMI filters are used to minimize the magnetic or radio frequency interference (RFI) produced by the network or the inverter.

The braking units are used to consume the energy fed back by some heavy potential energy or inertiaload to the inverter, so as to avoid inverter tripping arising from over-tension pumping voltage while giving a quick shutdown to the inverter.
The output AC reactor can filter out with effect the higher harmonic components in the inverter output current and reduce the electromagnetic interference (EMI) due to ultraharmonics. Also, it can improve current waveform, decrease noise and temperature rise of a running motor and enhance the stability of motor running. To avoid influence of leakage current due to distributed capacity of the cable, it is necessary to install an output AC reactor if the motor cable is longer.

#### Table 3-3 Capacity of Break Switch & Section Area of Wire

| Inverter Models      | Break      | Main Circuit (mm <sup>2</sup> ) |             | Control Wire       |
|----------------------|------------|---------------------------------|-------------|--------------------|
|                      | Switch (A) | Input Wire                      | Output Wire | (mm <sup>2</sup> ) |
| ZVF9-G0007T2/S2      | 10         | 1.5                             | 1.5         | 0.75               |
| ZVF9-G0015T2/S2      | 16         | 2.5                             | 2.5         | 0.75               |
| ZVF9-G0022T2/S2      | 20         | 4                               | 4           | 0.75               |
| ZVF9-G0037T2/S2      | 32         | 4                               | 4           | 0.75               |
| ZVF9-G0055T2         | 50         | 6                               | 6           | 0.75               |
| ZVF9-G0075T2         | 63         | 8                               | 8           | 0.75               |
| ZVF9-G0110T2         | 100        | 10                              | 10          | 0.75               |
| ZVF9-G0150T2         | 125        | 16                              | 16          | 0.75               |
| ZVF9-G0185T2         | 160        | 25                              | 25          | 0.75               |
| ZVF9-G0220T2         | 200        | 25                              | 25          | 0.75               |
| ZVF9-G0007T4         | 5          | 1.0                             | 1.0         | 0.75               |
| ZVF9-G0015T4/P0015T4 | 10         | 1.0                             | 1.0         | 0.75               |
| ZVF9-G0022T4/P0022T4 | 10         | 1.5                             | 1.5         | 0.75               |
| ZVF9-G0037T4/P0037T4 | 20         | 2.5                             | 2.5         | 0.75               |
| ZVF9-G0040T4/P0040T4 | 20         | 2.5                             | 2.5         | 0.75               |
| ZVF9-G0055T4/P0055T4 | 30         | 4                               | 4           | 0.75               |
| ZVF9-G0075T4/P0075T4 | 40         | 4                               | 4           | 0.75               |
| ZVF9-G0110T4/P0110T4 | 50         | 6                               | 6           | 0.75               |
| ZVF9-G0150T4/P0150T4 | 63         | 8                               | 8           | 0.75               |
| ZVF9-G0185T4/P0185T4 | 100        | 10                              | 10          | 0.75               |
| ZVF9-G0220T4/P0220T4 | 100        | 16                              | 16          | 0.75               |
| ZVF9-G0300T4/P0300T4 | 125        | 16                              | 16          | 0.75               |



-37-

-38-

Table 3-3 Capacity of Break Switch & Section Area of Wire

| Inverter Models      | Break<br>Switch (A) | Main Circuit (mm <sup>2</sup> ) |             | Control Wire       |
|----------------------|---------------------|---------------------------------|-------------|--------------------|
|                      |                     | Input Wire                      | Output Wire | (mm <sup>2</sup> ) |
| ZVF9-G0370T4/P0370T4 | 160                 | 25                              | 25          | 0.75               |
| ZVF9-G0450T4/P0450T4 | 200                 | 25                              | 25          | 0.75               |
| ZVF9-G0550T4/P0550T4 | 200                 | 35                              | 35          | 0.75               |
| ZVF9-G0750T4/P0750T4 | 250                 | 50                              | 50          | 0.75               |
| ZVF9-G0900T4/P0900T4 | 315                 | 50                              | 50          | 0.75               |
| ZVF9-G1100T4/P1100T4 | 400                 | 70                              | 70          | 0.75               |
| ZVF9-G1320T4/P1320T4 | 400                 | 70                              | 70          | 0.75               |
| ZVF9-G1600T4/P1600T4 | 500                 | 95                              | 95          | 0.75               |
| ZVF9-G1850T4/P1850T4 | 500                 | 95                              | 95          | 0.75               |
| ZVF9-G2000T4/P2000T4 | 600                 | 120                             | 120         | 0.75               |
| ZVF9-G2200T4/P2200T4 | 600                 | 120                             | 120         | 0.75               |
| ZVF9-G2500T4/P2500T4 | 800                 | 180                             | 180         | 0.75               |
| ZVF9-G2800T4/P2800T4 | 800                 | 180                             | 180         | 0.75               |
| ZVF9-/P3150T4        | 1000                | 180                             | 180         | 0.75               |

**Chapter 4 Operator panel and its Operation** 

## **Chapter 4 Operator panel and its Operation**

#### 4.1 Operator panel and Description

The inverter ZVF9 series has two operator panels, with potentiometer or without potentiometer. The standard model does not have a potentiometer before EX-factory. If a user needs an inverter with a potentiometer, he should tell the manufacturer in advance.

## 4. 1. 11.10perator Panel Outlay

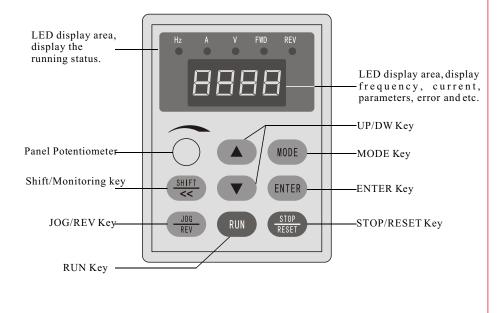
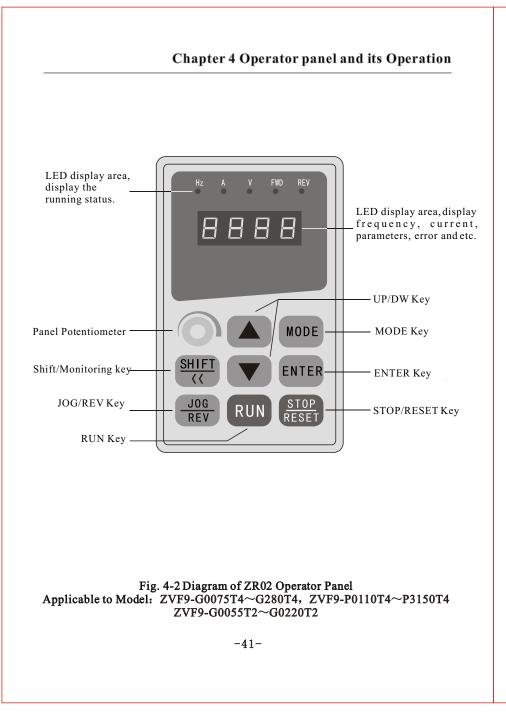




Fig. 4-1 Diagram of ZR01 Operator Panel Applicable to Model: ZVF9-G0007T2/S2~G0037T2/S2, ZVF9-G0007T4~G0055T4 ZVF9-P0015T4~P0075T4



#### 4.1.2 Function Description on Key



Run key. When the operating instruction is to select operator panel control (F010=0), press this key and the inverter begins to run.



Stop/Reset key. When the operating instruction is to select operator panel control (F010=0), the inverter is in normal running state. Press this key to stop running. When the inverter is in the state of failure alarming, press this key to solve failure and return to normal state.



Mode shifting key. Press this key to realize mode switching from monitoring parameter to function parameter.



Enter/Store key. Press this key to confirm current state of the inverter or store current parameter value.



Jog/Reverse key. Press this key to realize jog or reserve function, and decide jog or reverse function by selecting the parameter F039. The factory default setting is jog function.



Shift/Monitoring key. When a dataneeds modifying, press this key to select the modifier bit of data. In the status of monitoring, press this key to display the status parameter.



Increase key: Press this key, the data or parameter code will go up. Press it still, the modifying speed upward will rise.



Decrease key. Press this key, the data or parameter code will go down. Press itstill, the modifying speed upward will fall.

-42-

#### 4.1.3 Function Description on Operator Panel Indicator Lights

#### Table 4-1 LED Status Description

| Display Status | Function Description                                                              |
|----------------|-----------------------------------------------------------------------------------|
| • Hz           | When this indicator light is ON, LED displays frequency data.                     |
| • A            | When this indicator light is ON, LED displays current data.                       |
| • V            | When this indicator light is ON, LED displays voltage data.                       |
| ● F₩D          | When this indicator light is ON, the inverter is in the state of forward running. |
| • REV          | When this indicator light is ON, the inverter is in the state of reverse running. |
| ••••           | When all of the above 5 light is ON, the inverter is in the state of alarming.    |

#### 4.1.4 Working mode and display status of the function keyboard

#### 1. Mode of Monitoring State

Press **MODE** key, the inverter enters into monitoring state mode (LED displays  $Fd\Box\Box$ ). Under this mode, press  $\blacktriangle/\checkmark$  to decide what to be monitored (i.e., a running parameter or failure record).

#### 2. Mode of Function Status

Repress MODE key, the inverter will enter the mode of function status (LED displays  $F \Box \Box \Box$ ). Under this mode, press  $\blacktriangle / \triangledown$  or plus "SHIFT" key to decide the function parameter to be checked or modified.

#### 3. Power On/Off Display

The LED displays P.oFF when the inverter is just powered on or powered off properly.

#### **Chapter 4 Operator panel and its Operation**



●In any event, the operator panel will automatically return to the Monitoring Mode if there is no key entry in 2 continuous minutes.
●In the mode of monitoring, the frequency value will be modified by pressing ▲/▼ on the operator panel when setting F009=0.

3. The correspondence between display symbols of the parameter Fd13 and external input terminal status in the monitoring mode is shown below:

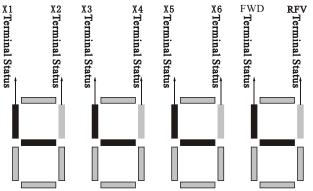



Fig. 4-3 Relationship between input terminal status and display symbols in monitoring mode

E: Terminal turns ON, valid input of terminal

• Terminal turns OFF, invalid input of terminal

## 4.1.5 Use of Operator Panel

①Modification of monitoring status parameter (change the motor rotating speed from Fd00 to Fd04).

| Order | Operation Steps                | LED Display | Description                                                         |
|-------|--------------------------------|-------------|---------------------------------------------------------------------|
| 1     |                                |             | Initiating mode before operation                                    |
| 2     | Press MODE                     | FdOO        | Enter monitoring status.                                            |
| 3     | <b>Press</b> △<br>Continuously | FdD4        | Set the monitoring status to 4 (motor rotating speed).              |
| 4     | Press ENTER                    | 1500        | Confirm the monitoring status and display the motor rotating speed. |

## 2 function of monitoring status parameter

| Order | Operation Steps                | LED Display | Description                                                           |
|-------|--------------------------------|-------------|-----------------------------------------------------------------------|
| 1     |                                | 0.0         | Initiating mode before operation                                      |
| 2     | Press MODE                     | FdDD        | Enter monitoring status.                                              |
| 3     | Repress MODE                   | FDDD        | Enter the function parameter mode.                                    |
| 4     | <b>Press</b> △<br>Continuously | F020        | Set the function code to jog frequency.                               |
| 5     | Press ENTER                    |             | Enter the status of jog function parameter setting.                   |
| 6     | <b>Press</b> △<br>Continuously | 20.00       | Set the jog frequency to 20.00Hz.                                     |
| 7     | Press ENTER                    | F020        | Exit the status of jog frequency parameter setting and save the data. |
| 8     | Press MODE                     | 0.0         | Return to monitoring mode.                                            |

## Chapter 4 Operator panel and its Operation

## 3 function of monitoring status parameter

| Order | Operation Steps           | LED Display | Description                                                            |
|-------|---------------------------|-------------|------------------------------------------------------------------------|
| 1     |                           | 0.0         | Initiating mode before operation                                       |
| 2     | Press MODE                | FdDD        | Enter monitoring status.                                               |
| 3     | Repress MODE              | FDDD        | Enter the function parameter mode.                                     |
| 4     | 4 Press 🛆<br>Continuously |             | Set the unit position of the function code to 9.                       |
| 5     | Press ENTER               |             | Enter the status of parameter value setting of the frequency set mode. |
| 6     | Press 🗸                   |             | Set the parameter value of the frequency set mode to 0.                |
| 7     | Press ENTER               | F009        | Exit the status of parameter value setting and save the data.          |
| 8     | Press MODE                |             | Return to monitoring mode.                                             |

## **④** Parameter Initiating

| Order | Operation Steps                | LED Display | Description                                                                      |
|-------|--------------------------------|-------------|----------------------------------------------------------------------------------|
| 1     |                                | 0.0         | Initiating mode before operation                                                 |
| 2     | Press MODE                     | FdOO        | Enter monitoring status.                                                         |
| 3     | Repress MODE                   | FOOD        | Enter the function parameter mode.                                               |
| 4     | <b>Press</b> $\triangle$ Twice | F002        | Set the unitposition of the function code to 2.                                  |
| 5     | Press ENTER                    |             | Enter the status of function parameter value setting of parameter initializing.  |
| 6     | <b>Press</b> $\triangle$ Twice | 2           | Set the parameter value to 2, which means the initialization of parameter value. |
| 7     | Press ENTER                    | F002        | Parameter initializing finished and return to the status of function codes.      |
| 8     | Press MODE                     |             | Return to monitoring mode.                                                       |

-46-

#### 4.2 Monitoring Parameter Display

#### Table 4-2 Monitoring Parameter LED Display List

| CATEGORY                      | DISPLAY<br>CODE | NAME                            | UNIT  |
|-------------------------------|-----------------|---------------------------------|-------|
|                               | Fd00            | Output frequency                | Hz    |
| _                             | Fd01            | Set frequency                   | Hz    |
| MON                           | Fd02            | Output current                  | A     |
| ПТО                           | Fd03            | Output voltage                  | V     |
| RINO                          | Fd04            | Motor rotation speed            | r/min |
| MONITORING DISPLAY PARAMETERS | Fd05            | Running linear speed            |       |
| SPL/                          | Fd06            | Set linear speed                |       |
| NY P/                         | Fd07            | DC bus barvoltage               | V     |
| ARAI                          | Fd08            | Power module thermometer        | Ĉ     |
| MET                           | Fd09            | PID set value                   |       |
| ERS                           | Fd10            | PID feedback value              |       |
|                               | Fd11            | Counter value                   |       |
|                               | Fd12            | Total time of current running   | h     |
|                               | Fd13            | Enter terminal status parameter |       |

#### DISPLAY UNIT CATEGORY NAME CODE 0: 0C-1 Acceleration running over current 1: 0C-2 Deceleration running Fd14 1st diagnostic over current trouble codes 2: 0C-3 Steady-speed running over current 3: 0U-1 Acceleration running over voltage 4: 0U-2 Deceleration running over voltage 2nd MONITORING DISPLAY PARAMETERS 5: 0U-3 Steady running over diagnostic Fd15 voltage trouble 6: 0U-4 Over voltage when codes power off 7: LU Under voltage of running 8: LP Input side open-phase 9: Ler Power module failure 3rd 10: OH Radiator over heat diagnostic Fd16 11: 0L-1 Inverter overload trouble codes 12: 0L-2 Motor overload 13: EF external equipment failure 14: CE-1 Remain 15: CE-2 Current detection error 4th diagnostic 16: CE-3 Keyboard Fd17 trouble codes communication failure 17: CE-4 COM error 18~20 Remain V Fd18 DC bus barvoltage of the latest failure Fd19 Output current of the lasted failure А Output frequency of the lasted failure Ηz Fd20

Chapter 4 Operator panel and its Operation

-47-

-48-

Total running time of the lasted failure

Module temperature of the lasted failure

Fd21

Fd22

S

°C

#### 4.3 Failure Parameters Display

#### Table 4-3 Failure Codes LCD Display List

| CATEGORY                      | DISPLAYCODE | Failure                           |
|-------------------------------|-------------|-----------------------------------|
|                               | 00-1        | Acceleration running over current |
|                               | 00-2        | Deceleration running over current |
|                               | 0C-3        | Steady-speed running over current |
| MO                            | 0U-1        | Acceleration running over voltage |
| MONITORING DISPLAY PARAMETERS | 0U-2        | Deceleration running over voltage |
| ORIN                          | 0U-3        | Steady running over voltage       |
| GD                            | 0U-4        | Over voltage when power off       |
| ISP                           | LU          | Under voltage ofrunning           |
| LAY                           | LP          | Input side open-phase             |
| PAR                           | Ler         | Power module failure              |
| AME                           | он          | Radiator over heat                |
| ETER                          | 0L-1        | Inverter overload                 |
| ŝ                             | 0L-2        | Motor overload                    |
|                               | EF          | external equipment failure        |
|                               | CE-1        | Remain                            |
|                               | CE-2        | Current detection error           |
|                               | CE-3        | Keyboard communication failure    |
|                               | CE-4        | COM error                         |
|                               | Remain      |                                   |

## **Chapter 5 Operation of Inverter**

**Chapter 5 Operation of Inverter** 

## 5.1 Trial Operation

#### 5.1.1 Safety Instruction on Trial Operation

Never open the front cover while the inverter is power ON.
Otherwise, there is the danger of electric shock.
Never touch the inner side of the inverter while it is power ON, nor put any foreign matter, i.e., rod or other matter inside the inverter. Otherwise, it may result in serious damage to the equipment or death to personnel.

CAUTION by

HAZARD

Motor insulation should be checked before the inverter is used for the first use or reused after a long-termidle. Be sure the insulation resistance measured is no lower than 5Ω.
 An inverter stored for half ayear or longer must be given powerup test before use, so that the main circuit filtering capacity of the inverter could be recovered. Do raise the voltage gradually by using a voltage regulator to some rated value before it is recharged. Generally, the recharging period lasts 1~2 hours. Otherwise, there is the danger of electric shock or exposure.

#### 5.1.2 Check before trial operation.

The following steps should be inspected and confirmed before the trial operation of the inverter:

•Be sure that the application ambient and installation for the inverter is in accordance with the requirements specified in Clause 3.1.

•Be sure that the main circuit is correctly wired. The input power supply of the inverter must be connected to the terminal R, S and T. The output terminal U, V and W must be connected to the motor.

•Be sure that the ground terminal is reliably and properly grounded.

Be sure all the switches and terminals are inproper state of off or shutdown.
Be sure there is no short cutting or short to ground of all the terminals and electrified parts.

Be sure all the terminals, connectors and screws are tightly fastened.
Be sure the motor has no other loads.

-49-

## 5.1.3 Trial Operation

Try this step only after careful inspection as mentioned in the clauses of 5.1.2. While in trial operation, it is suggested that the motor has vacant load to avoid damage to this mechanical equipment arising from incorrect operation. During this period, if the operating instruction is F010, then the RUN/STOP key control (factory default setting) of the operator panel must be selected. The trial operation steps must be followed as shown in Table 5-1 below.

|       |                                                                                                                                                                                                                                                                                                                    | · ·                                                                                                                                                                                                                                                                                                                                             |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Order | Operation                                                                                                                                                                                                                                                                                                          | Description                                                                                                                                                                                                                                                                                                                                     |
| с     | Switch on, inverter energized.                                                                                                                                                                                                                                                                                     | When energized, the inverter is in the state<br>of readiness and LED displays 0.00Hz.                                                                                                                                                                                                                                                           |
| 2     | Press ▲/▼ till LED displays 5.00Hz.                                                                                                                                                                                                                                                                                | Set the frequency to 5.00Hz. This step can be<br>left out if the displayed frequency is already<br>5.00Hz when energized.                                                                                                                                                                                                                       |
| 3     | Press RUN                                                                                                                                                                                                                                                                                                          | Motor begins rotating, the frequency displayed on<br>the inverter LED raises from 0.00Hz to 5.00Hz, and<br>the built-in cooling fan begins working.                                                                                                                                                                                             |
| 4     | Keep a close eye on the<br>following points:<br>(1)Is there any abnormal<br>vibration or noise when<br>the motor runs?<br>(2)Is there any tripping or<br>other abnormality of the<br>inverter?<br>(3)Does the motor run in<br>the correct way?<br>(4)Are the values of<br>rotation speed and<br>frequency correct? | If there is any anomaly or tripping, stop<br>running immediately and cut off the<br>power supply. Please refer to Chapter 7,<br>find the trouble causes, then proceed trial<br>operation again after troubleshooting.<br>If the motorruns in the wrong direction,<br>change arbitrary two-phase connection of<br>the output terminal U, V or W. |
| 5     | Press ▲ continuously<br>till LED displays<br>50.00Hz.                                                                                                                                                                                                                                                              | The motor accelerates rotating and the displayed frequency rises from 5.00Hz to 50.00Hz. Go to the next step if everything is normal.                                                                                                                                                                                                           |
| 6     | Press ▼ continuously till<br>LED displays 0.00Hz.                                                                                                                                                                                                                                                                  | The motor decelerates rotating and the displayed frequency falls from 50.00Hz to 0.00Hz. Go to the next step if everything is normal.                                                                                                                                                                                                           |
| 7     | Press STOP                                                                                                                                                                                                                                                                                                         | The inverter stops outputting, the motor stops<br>running and the trial operation ends. If everything is<br>normal, please repeat the operation for several times.                                                                                                                                                                              |

#### Table 5-1 Trial Operation Steps

# 5.2 Cautions for Operation

All the inverter functions are determined by set parameters. ZVF9 series inverter parameters consist of the function codes F000~F166, see the detail in Chapter 6 of this manual. The displayed parameter value of each function code is the factory default value of the inverter before EX factory, which can be modified by the user according to his needs. It is noteworthy that a user shall change the relative function parameters when he amends a parameter because some of the parameters are inter-related. It is not recommended to modify the set parameter value if there is no special requirement, for the factory default setting has been done properly. Otherwise, this may cause damage to the inverter or equipment due to error parameter.

In case there is an error alternation of the parameter, please initialize the parameter with reference to the operation method in the clause 4.1.5 ④ Parameter Initializing (Restoring to Factory Default Settings).

#### 5.2.1 Cautions for Operation

WARNING

Otherwise, there is the danger of electric shock. •Do not touch the inner side of the inverter while the power is ON, HAZARD

that may result in injury to personnel.

nor put any foreign matter, i.e., rod or other matter inside the inverter. Otherwise, it may result in serious damage to the equipment or death to personnel. •Do not operate the inverter with wet hands. •If the Retry Mode is set, please put a warning sign like "KEEP CLEAR" or "HAZARD" in an eye-catching place before the equipment to avoid sudden restart of the equipment after a trip stop

•Do not open the front cover while the inverter is powered ON.

• If the inverter runs at a frequency higher than 50Hz, DO confirm it is within the speedrange acceptable by your motor bearing and mechanical device. Otherwise, there is the danger of damage to the motor.

• Derating should be done before use due to less effective of heat dissipation when a general motor runs at a low frequency. If it is a constant torque load, then a forced method or a special variable frequency motor should be used to release heat. •DO cut off the power supply of an inverter set aside for a long time to avoid foreign matter or other things enter in it which

may cause damage to the inverter or even lead to fire. -52-

-51-

•If the inverter is used beyond the range of allowable working voltage, then an extra step-up or step-down voltage transformer shall be configured.



•Due to thin air in a place where the altitude is higher than 1,000m, the heat dissipation of inverter will be less effective. Hence derating should be done before use. In general, when the height rises by 1,000m, the rated voltage of the inverter shall reduce by 10%. Refer to Figure 5-1 for details of the derating curve.

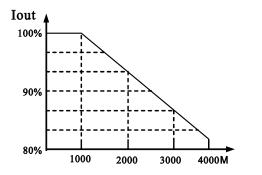



Figure 5-1 Diagram of Inverter Derating Curve

•DO NOT touch the radiator or charging resistor of the inverter with hand(s). Otherwise, there is the possibility of getting scalded. •DO NOT proceed direct start-stop operation frequently with a contactor or any other switch devices in the inverter input side. As large charging current exists in the main circuit of the inverter, frequent power-on/off may produce cumulative effect resulting in heat fatigue of inverter components and great reduction of service life of the inverter.



FORBIDDEN

•In case abnormalities occur, such as smoke, offodor, strange sound, DO cutoff the power supply immediately, overhaul the equipment or turn to the agent for help via phone call.

#### 5.3 Examples of Use

This manual provides following examples for users' reference on the use of inverter.

5.3.1 Eg. 1: Run or stop the inverter with operator panel, and feed the frequency with operator panel potentiometer.

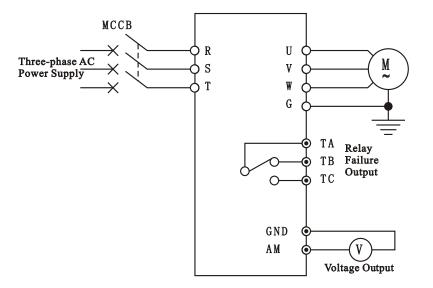
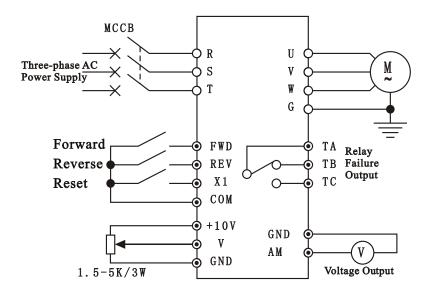
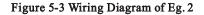



Figure 5-2 Eg.1 Wiring Diagram

•F009—This indicates the selection of frequency setting. If setting this value to

"0", the frequency will be fed by the potentiometer.


•F010-This indicates the selection of operating instruction. If setting this value to


"0", the inverter will be controlled by the operator panel.

•Run or stop the inverter with RUN STOP keys on the operator panel.

•Rotate the operator panel potentiometer to adjust the speed.

Eg.2: Run or stop the inverter with external terminals, and feed the frequency with external potentiometer.





F009—This indicates the selection of frequency setting. If setting this value to "3", the frequency will be set by external voltage signal V or external potentiometer.
F010—This indicates the selection of operating instruction. If setting this value to "1", the inverter will be controlled by external terminals.

•F111—This indicates the selection of the function of input terminal X1. If setting this value to "15", then the external reset input is performed.

•FWD-COM off, motor forwards. REV-COM on, motor reverses. FWD, REV-COM on or offat the same time, inverter stops running. X1-COM on, failure resets.

 $\bullet Realize speed control by regulating the value of "V" (controlled by 1.5~5K/3W potentiometer).$ 

**Chapter 5 Operation of Inverter** 

Eg.3: Run or stop the inverter with external terminals by adopting operation manner at multistage speed.

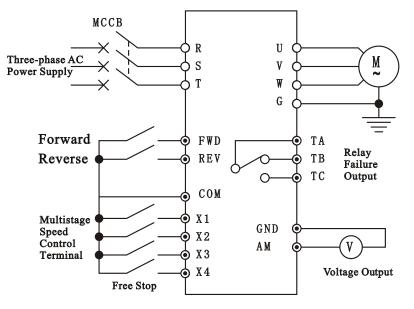



Figure 5-4 Eg.3 Wiring Diagram

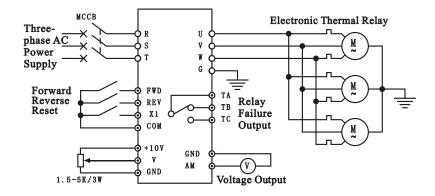
•F010-This indicates the selection of operating instruction. If setting this value to

"1", the inverter will be controlled by external terminals.

•F111~F113—This indicates the selection of multi-function terminal X1~X3, set to 1,

2 and 3 multistage speed control terminal in order.

•F114-(X4 multi-function selection). Select 8---External free stop.


•F081~F087—Multi-speed frequency setting, which can be set in 7 stages. Factory defaults are preferred.

•FWD-COM off, motor forwards; REV-COM off, motor reverses.

FWD, REV-COM on or off simultaneously, inverter stops.

•Connecting an arbitrary terminal of X1~X3 to COM (7 pairs of such complex in total), the inverter willrun at the frequency of multistage speed selected by X1~X3. -56-

5.3.4 Eg.4 Run or stop the inverter with external terminals, feed the frequency with external potentiometer and multiple motors run in parallel.



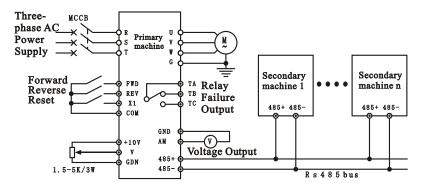
#### Figure 5-5 Eg.4 Wiring Diagram

•F009—This indicates the selection of frequency setting. If setting this value to "3", the frequency will be set by external voltage signal V or external potentiometer.

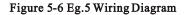
•F010—This indicates the selection of operating instruction. If setting this value to "1", the inverter will be controlled by external terminals.

•F111—This indicates the selection of the function of input terminal X1. If setting this value to "15", then the external reset input is performed.

•FWD-COM off, motorforwards. REV-COM off, motorreverses. FWD, REV-COM on or offsimultaneously, inverter stops running. X1-COM off, failure resets.


 $\bullet$ Realize speed control by regulating the value of "V" (controlled by 1.5~5K/3W potentiometer).

• Each set of motor uses thermal relay to have an overload protection.


• The value of electronic thermal relay is determined by the parameter F148 through tests.

#### -57-

#### Chapter 5 Operation of Inverter



## 5. 3. 5 Eg.5: Multiple Inverter Ratio Interlocking Operation Control



Primary Machine Setting

•F155—Local communication address: Set this address to 0 and make the inverteras a host.

•F156—Communication data format: Set all the data formats of the inverter to the same value.

•F157—Communication baud rate: Set all the baud rates of the inverter to the same value. Secondary Machine Setting

•F009—Selection of frequency setting: Set this value to 6, the frequency will be set by COM (serial communication).

 $\bullet$ F010-Selection of operating instruction: Set this value to "2", the inverter will be controlled by COM.

•F155—Local communication address: Set this address to  $1\sim30$ , which means 30 sets of inverters can be connected at this address maximally).

•F156—Communication data format: Be the same as the primary machine.

•F157—Communication baud rate: Be the same as the primary machine.

•F158—Interlocking setting ratio: 0.01~10, set as per user's demand.

Only such operations can be done on the master inverter, such as start, stop and so the like. Other operations should be matched with the master inverter.

5.3.6 Eg.6: PID Constant Pressure Water Supply Control

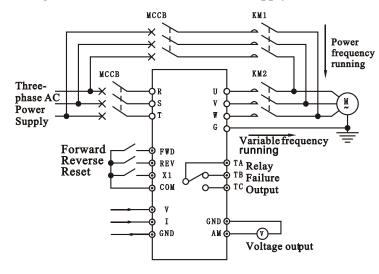



Figure 5-7 Eg.6 Wiring Diagram

●F130—PID motion selection: Set the value to 1, then PID selection is valid.

•F131—PID given path selection: Set the value to 0, then the selection of  $\blacktriangle/\nabla$  is valid.

●F132—Given digital setting: Set according to actual demand. Set it to 5.0Vherein. ●F133—PID Feedback path selection: Set the value to 1, then external current is selected.

•F134—PID Feedback flow gain: Set according to actual demand. No regulation here.

•F135—PID feedback polarity selection: Set the value to 0, then positive is selected.

•F136—Proportional gain P: Set according to actual demand. No regulation here. •F137—Integral time constant TI: Set according to actual demand. No regulation

here.

•F138—Derivative time constant DI: Set according to actual demand. No regulation here.

•F139—Sampling period: Noneed to alter.

•F140—Deviation limit: Setaccording to actual demand. No regulation here.

#### **Chapter 5 Operation of Inverter**

•F141—Sleep threshold: Set according to actual demand. No regulation here.

•F142—Revoke threshold: Set according to actual demand. No regulation here.

•F143—Check-out time of sleep/revoke threshold: Set according to actual demand. No regulation here.

Other parameters remain the factory defaults. Corresponding initiate modes and other operations shall be modified in the light of actual conditions and requirements.

•The contactor KM1 and KM2 must be designed in interlocked manner to realize converting between power frequency and variable frequency. It is forbidden to close simultaneously. Otherwise, it may lead to permanent damage to the inverter.

-60-

**Chapter 6 Description of Function Parameters** 

Chapter 6 Description of Function Parameters

## 6.1 Schedule of Function Parameters



●The mark "√" indicates the setting value of parameter can be modified no matter when the inverter is shutdown or running.
●The mark "×" indicates the setting value of parameter can be modified only when the inverter is shutdown, and cannot be modified when the inverter is running.
●The mark "— " indicates the parameter can be displayed only and can not be modified.

#### **Chapter 6 Description of Function Parameters**

## 6.1.1 Basic Functions

| Function<br>Code | Name                                                    | Range of setting                                                                                                                                                                                                                                                              | Unit | Minimum<br>Unit | Factory<br>Default<br>Setting                      | Operation<br>Modification |
|------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|----------------------------------------------------|---------------------------|
| F000             | Software Version<br>number                              |                                                                                                                                                                                                                                                                               |      |                 |                                                    | -                         |
| <b>F00</b> 1     | Inverter Specification<br>Display                       |                                                                                                                                                                                                                                                                               |      |                 |                                                    | -                         |
| F002             | Parameter<br>Initiating /<br>Removing Failure<br>Record | 0:Parameter is in thestatus of<br>modification.<br>1:Remove failure record information.<br>2:All the parameters returnto factory<br>default settings.                                                                                                                         |      | 1               | 0                                                  | Х                         |
| F003-007         | Remain                                                  |                                                                                                                                                                                                                                                                               |      |                 |                                                    | -                         |
| F008             | Setting of operation<br>frequency                       | Operation frequency is set within 0.00Hz~upper limit of the frequency.                                                                                                                                                                                                        | Ηz   | 0.01            | 50.00 Hz                                           | ~                         |
| F009             | Selection of<br>frequency<br>setting manner             | 0:Set by the potentiometer of operator<br>panel.<br>1: Set by external terminal ▲/▼<br>2:Set by analog voltagesignal V<br>(0~10VDC)<br>3:or the external potentiometer<br>4:Set by analog currentsignal I<br>(0~20mA).<br>5:Set by analog inputassembly.<br>6:Set by 485 COM. |      | 1               | 1                                                  | ~                         |
| F010             | Selection of<br>operation control<br>mode               | 0:Controlled by <b>RUN/STOP</b> key on<br>operator panel.<br>1: Controlled by externalterminal<br>2:Controlled by 485 COM.                                                                                                                                                    |      | 1               | 0                                                  | ~                         |
| F011             | Selection of motor<br>rotating direction                | 0:Unidirectional with the setdirection<br>1:Opposite to the setdirection.<br>2:No reversal.                                                                                                                                                                                   |      | 1               | 0                                                  | 4                         |
| F012             | Maximum output<br>frequency                             | 50.00Hz~400.0Hz                                                                                                                                                                                                                                                               | Hz   | 0.01            | 50.00Hz                                            | Х                         |
| F013             | Selection of V/F<br>curve mode                          | 0:Linearity (Constant torque mode)<br>1:Square (Quadratic torque mode)                                                                                                                                                                                                        |      | 1               | 0                                                  | Х                         |
| F014             | Selection of acceleration<br>/deceleration manner       | 0:Linear 1:S curve                                                                                                                                                                                                                                                            |      | 1               | 0                                                  | Х                         |
| F015             | Accelerating<br>period 1                                | 0.1~6000.0S                                                                                                                                                                                                                                                                   | S    | 0.1             | Determined in<br>accordance with<br>specifications | 4                         |
| F016             | Decelerating<br>period 1                                | 0.1~6000.0S                                                                                                                                                                                                                                                                   | S    | 0.1             | Determined in<br>accordance with<br>specifications | ~                         |
| F017             | Upper limit of<br>frequency                             | Lower limit ~ maximumoutput<br>frequency                                                                                                                                                                                                                                      | Hz   | 0.01            | 50.00Hz                                            | Х                         |

-61-

-62-

## **Chapter 6 Description of Function Parameters**

#### 6.1.1 Basic Functions (Continued)

| Function<br>Code | Name                        | Range of setting                |    | Minimum<br>Unit | Factory<br>Default<br>Setting | Operation<br>Modification |
|------------------|-----------------------------|---------------------------------|----|-----------------|-------------------------------|---------------------------|
| F018             | Lower limit of<br>frequency | 0.00Hz~Upper limit of frequency | Hz | 0.01            | 0.00Hz                        | Х                         |
| F019             | Remain                      |                                 |    |                 |                               | -                         |

#### 6.1.2Jog Functions

| Function<br>Code | Name                    | Range of setting |    | Minimum<br>Unit | Factory<br>Default<br>Setting | Operation<br>Modification |
|------------------|-------------------------|------------------|----|-----------------|-------------------------------|---------------------------|
| F020             | Jog running frequency   | 0.00~50.00Hz     | Hz | 0.01            | 10.00Hz                       | ~                         |
| F021             | Jog accelerating period | 0.1~6000.0S      | S  | 0.1             | 10.0S                         | ~                         |
| F022             | Jog decelerating period | 0.1~6000.0S      | S  | 0.1             | 10.0S                         | ~                         |

#### 6.1.3 Start & Stop Function

| Function<br>Code | Name                                      | Range of setting                                                                                                          | Unit | Minimum<br>Unit | Factory<br>Default<br>Setting | Operation<br>Modification |
|------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------|-----------------|-------------------------------|---------------------------|
| F023             | Selection of starting<br>mode             | 0:Start at the starting<br>frequency<br>1:Brake first and startthen<br>2: Start in the mode of<br>rotation speed tracking |      | 1               | 0                             | ~                         |
| F024             | Starting frequency                        | 0.00~20.00Hz                                                                                                              | Hz   | 0.01            | 0.00Hz                        | ~                         |
| F025             | Starting frequency holding time           | 0.0~30.0S                                                                                                                 | s    | 0.1             | 0.0S                          | х                         |
| F026             | Starting DC braking voltage               | 0~20%                                                                                                                     | %    | 1               | 0%                            | х                         |
| F027             | Starting DC braking time                  | 0.0~20.0S                                                                                                                 | S    | 0.1             | 0. OS                         | х                         |
| F028             | FWD/REV dead time                         | 0.0~10.0S                                                                                                                 | s    | 0.1             | 2. OS                         | х                         |
| F029             | Halt mode                                 | 0:Decelerating stop<br>1: Free stop                                                                                       |      | 1               | 0                             | ~                         |
| F030             | Shutdown DC braking<br>starting frequency | 0.00~20.00Hz                                                                                                              | Hz   | 0.01            | 3.00Hz                        | х                         |
| F031             | Shutdown DC braking voltage               | 0~20%                                                                                                                     | %    | 1               | 0%                            | ~                         |
| F032             | Shutdown DC braking time                  | 0.0~30.0S                                                                                                                 | S    | 0.1             | 0.0S                          | Х                         |
| F033             | Remain                                    |                                                                                                                           |      |                 |                               | -                         |

## **Chapter 6 Description of Function Parameters**

6.1.4 Auxiliary Functions

| Function<br>Code | Name                                          | Range of setting                                                                                                                                                                                                                                                                                                                                                                                                           | Unit | Minimum<br>Unit | Factory<br>Default<br>Setting                      | Operation<br>Modification |
|------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|----------------------------------------------------|---------------------------|
| F034             | Selection of<br>Power On<br>display items     | 0:Current output frequency of the<br>inverter<br>1:Current set frequency of the inverter<br>2:Output current<br>3:Output voltage<br>4:Motor rotating speed<br>5:Linear speed of running<br>6:Linear speed setting<br>7:DC bus bar voltage<br>8:Power module temperature<br>9:PID target value<br>10:PID feedback value<br>11:Counter value<br>12:Cumulative time of current<br>running (Hours)<br>13:Input terminal status | Hz   | 1               | 0                                                  | V                         |
| F035-36          | Remain                                        |                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                 |                                                    | -                         |
| F037             | Display coefficient<br>of linear speed        | 0.01~100.0                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 0.01            | 1.00                                               | √                         |
| F038             | Display coefficient of<br>closed-loop control | 0.001~10.00                                                                                                                                                                                                                                                                                                                                                                                                                |      | 0.001           | 1.000                                              | ~                         |
| F039             | Selection of REV/JOG<br>key function          | 0:REV 1:JOG                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1               | 1                                                  | Х                         |
| F040             | Two-wire/Three-<br>wire running<br>control    | 0:Two-wire controlmode 1<br>1:Two-wire controlmode 2<br>2:Three-wire control mode                                                                                                                                                                                                                                                                                                                                          |      | 1               | 0                                                  | х                         |
| F041             | Accelerating period 2                         | 0.1~6000.0S                                                                                                                                                                                                                                                                                                                                                                                                                | s    | 0.1             | Determined in<br>accordance with<br>specifications | ~                         |
| F042             | Decelerating period 2                         | 0.1~6000.0S                                                                                                                                                                                                                                                                                                                                                                                                                | s    | 0 1             | Determined in<br>accordance with<br>specifications | ~                         |
| F043-44          | Remain                                        |                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                 |                                                    | -                         |

-63-

-64-

## 6.1.5 Special Functions

| Function<br>Code | Name                                                       | Range of setting                                      | Unit | Minimum<br>Unit | Factory<br>Default<br>Setting                      | Operation<br>Modification |
|------------------|------------------------------------------------------------|-------------------------------------------------------|------|-----------------|----------------------------------------------------|---------------------------|
| F045             | Selection of automatic energy-saving operation             | 0:Forbidden 1:Allowable                               |      | 1               | 0                                                  | Х                         |
| F046             | Setting of slip compensation                               | 0~20%                                                 | %    | 0.1             | 0.0%                                               | Х                         |
| F047             | Selection of AVR function                                  | 0:Forbidden 1:Allowable                               |      | 1               | 0                                                  | Х                         |
| F048             | Torque lifting                                             | 0~30%                                                 | %    | 1               | Determined in<br>accordance with<br>specifications | ~                         |
| F049             | Carrier frequency                                          | 1.0~13KHz                                             | KHz  | 0.1             | Determined in<br>accordance with<br>specifications | Х                         |
| F050             | Leap frequency 1                                           | Lower limit of frequency~<br>upper limit of frequency | Hz   | 0.01            | 0.00Hz                                             | ~                         |
| F051             | Range of leap frequency 1                                  | 0.00~10.00Hz                                          | Hz   | 0.01            | 0.00Hz                                             | ~                         |
| F052             | Leap frequency 2                                           | Lower limit of frequency~<br>upper limit of frequency | Hz   | 0.01            | 0.00Hz                                             | ~                         |
| F053             | Range of leap frequency 2                                  | 0.00~10.00Hz                                          | Hz   | 0.01            | 0.00Hz                                             | ~                         |
| F054             | Reference frequency of<br>acceleration/deceleration period | 10.00~400.0Hz                                         | Hz   | 0.01            | 50.00                                              | ~                         |
| F055             | Selection of retrymode                                     | 0:Forbidden 1:Allowable                               |      | 1               | 0                                                  | Х                         |
| F056             | Wait time for restart mode                                 | 0. 0~20. 0S                                           | S    | 0.1             | 1.0S                                               | х                         |
| F057             | Frequency arrival checkou<br>range (FAR)                   | <sup>t</sup> 0.00~15.00Hz                             | Hz   | 0.01            | 5.00Hz                                             | ~                         |
| F058             | Setting of FDT level                                       | 0.00Hz~upper limit of frequency                       | Hz   | 0.01            | 10.00Hz                                            | ~                         |
| F059             | PDT lagged value                                           | 0.00~30.00Hz                                          | Hz   | 0.01            | 1.00Hz                                             | ~                         |
| F060             | Overload pre-alarm level                                   | 20~110%                                               | %    | 1               | 100%                                               | Х                         |
| F061             | Overload pre-alarm action<br>period                        | 0.0~15.0S                                             | S    | 0.1             | 1.OS                                               | Х                         |
| F062             | Remain                                                     |                                                       |      |                 |                                                    | -                         |
| F063             | Remain                                                     |                                                       |      |                 |                                                    | -                         |

## Chapter 6 Description of Function Parameters

## 6.1.6 Analog Input/Output Functions

| Function<br>Code | Name                                                                                         | Range of setting                                                                                              | Unit | Minimum<br>Unit | Factory<br>Default<br>Setting | Operation<br>Modification |
|------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------|-----------------|-------------------------------|---------------------------|
| F064             | Lower limit of analog voltage input                                                          | 0.0V~[F065]                                                                                                   | v    | 0.1             | 0. OV                         | ~                         |
| F065             | Upper limit of analog<br>voltage input                                                       | [F064]~10.0V                                                                                                  | v    | 0.1             | 10.0V                         | ~                         |
| F066             | Lower limit of analog<br>current I                                                           | 0.0mA~[F067]                                                                                                  | mA   | 0.1             | 4. OmA                        | ~                         |
| F067             | Upper limit of analog<br>current I                                                           | [F066]~20.0mA                                                                                                 | mA   | 0.1             | 20. OmA                       | ~                         |
| F068             | Bipolarity zero offsetof<br>analog input                                                     | 0~100%                                                                                                        | %    | 1               | 0%                            | Х                         |
| F069             | Biasing direction of the<br>frequency corresponding<br>to the lower limit of analog<br>input | 0 : Positive bias<br>1 : Negative bias                                                                        |      | 1               | 0                             | х                         |
| F070             | Biasing direction of the<br>frequency corresponding<br>to the Upper limit of analog<br>input | 0 : Positive bias<br>1 : Negative bias                                                                        |      | 1               | 0                             | Х                         |
| F071             | Corresponding set<br>frequency of Min.analog<br>input                                        | 0.00Hz~upper limit of frequency                                                                               | Hz   | 0.01            | 0.00Hz                        | ~                         |
| F072             | Corresponding set<br>frequency of Max. analog<br>input                                       | 0.00Hz~Lower limit of frequency                                                                               | Hz   | 0.01            | 50.00Hz                       | ~                         |
| F073             | Delay period of analog<br>input signal                                                       | 0.1~5.0S                                                                                                      | S    | 0.1             | 0.5S                          | Х                         |
| F074             | Analog meter output AM                                                                       | 0:Running frequency<br>1:Motor rotation speed<br>2:Output current<br>3:Output voltage<br>4:PID feedback value |      | 1               | 0                             | ~                         |
| F075             | Proportional gain of analog meter output AM                                                  | 50%~200%                                                                                                      | %    | 1               | 100%                          | ~                         |
| F076             | Analog meter output AM bias                                                                  | 0.00~3.00V                                                                                                    | v    | 0.01            | 2.00V                         | ~                         |

-66-

## 6. 1. 6Analog Functions (Continued)

| Function<br>Code | Name                             | Range of setting                                                                                                                                                                 | Unit | Minimum<br>Unit | Factory<br>Default<br>Setting | Operation<br>Modification |
|------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|-------------------------------|---------------------------|
| F077             | Analog input<br>assembly setting | 0 : External voltage V+External current I<br>1 : External voltage V-External current I<br>2 : External current I+External voltage V<br>3 : External current I-External voltage V |      | 1               | 0                             | ~                         |
| F078             | Remain                           |                                                                                                                                                                                  |      |                 |                               | -                         |
| F079             | Remain                           |                                                                                                                                                                                  |      |                 |                               | -                         |

#### 6. 1. 7 Multi-speed / Program Running Functions

| Function<br>Code | Name                                                        | Range of setting                                                                                                                            | Unit | Minimum<br>Unit | Factory<br>Default<br>Setting | Operation<br>Modification |
|------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|-------------------------------|---------------------------|
| F080             | Selection of<br>programmable<br>multistage speed<br>running | 0:Non operation<br>1:Single cycling<br>2:Continuous cycling<br>3:Maintaining ultimate<br>value after singe cycling<br>4:Wobbulation running |      | 1               | 0                             | х                         |
| F081             | Output frequency at the<br>first stage speed                | Lower limit of frequency~<br>upper limit of frequency                                                                                       | Hz   | 0.01            | 5.00Hz                        | ~                         |
| F082             | Output frequency at the<br>second stage speed               | Lower limit of frequency~<br>upper limit of frequency                                                                                       | Hz   | 0.01            | 10.00Hz                       | ~                         |
| F083             | Output frequency at the third stage speed                   | Lower limit of frequency~<br>upper limit of frequency                                                                                       | Hz   | 0.01            | 20.00Hz                       | ~                         |
| F084             | Output frequency at the fourth stage speed                  | Lower limit of frequency~<br>upper limit of frequency                                                                                       | Hz   | 0.01            | 30.00Hz                       | ~                         |
| F085             | Output frequency at the<br>fifth stage speed                | Lower limit of frequency~<br>upper limit of frequency                                                                                       | Hz   | 0.01            | 40.00Hz                       | ~                         |
| F086             | Output frequency at the sixth stage speed                   | Lower limit of frequency~<br>upper limit of frequency                                                                                       | Hz   | 0.01            | 45.00Hz                       | ~                         |
| F087             | Output frequency at the seventh stage speed                 | Lower limit of frequency~<br>upper limit of frequency                                                                                       | Hz   | 0.01            | 50.00Hz                       | ~                         |
| F088             | First stage speedrunning time                               | 0.0~6500.0S                                                                                                                                 | S    | 0.1             | 20. OS                        | Х                         |

## **Chapter 6 Description of Function Parameters**

## 6. 1. 7Multistage Speed/Programmable Running Functions (Continued)

| Function<br>Code | Name                                                        | Range of setting | Unit | Minimum<br>Unit | Factory<br>Default<br>Setting | Operation<br>Modification |
|------------------|-------------------------------------------------------------|------------------|------|-----------------|-------------------------------|---------------------------|
| F089             | Selection of running direction at the first stage speed     | 0:FRD 1:REV      |      | 1               | 0                             | Х                         |
| F090             | First stage speed add-subtracttime                          | 0.0~6000.0S      | s    | 0.1             | 20. OS                        | ~                         |
| F091             | Second stage speed runningtime                              | 0.0~6000.0S      | s    | 0.1             | 20.0S                         | Х                         |
| F092             | Selection of running direction at the second stage speed    | 0:FRD 1:REV      |      | 1               | 0                             | Х                         |
| F093             | Second stage speed add-subtract time                        | 0. 0~6000. OS    | s    | 0.1             | 20. OS                        | 4                         |
| F094             | Third stage speed running time                              | 0.0~6000.0S      | S    | 0.1             | 20.0S                         | Х                         |
| F095             | Selection of running direction at the third stage speed     | 0:FRD 1:REV      |      | 1               | 0                             | Х                         |
| F096             | Third stage speed add-subtract time                         | 0.0~6000.0S      | S    | 0.1             | 20. OS                        | ~                         |
| F097             | fourth stage speed running time                             | 0.0~6000.0S      | s    | 0.1             | 20.0S                         | Х                         |
| F098             | Selection of running direction<br>at the fourth stage speed | 0:FRD 1:REV      |      | 1               | 0                             | Х                         |
| F099             | Fourth stage speed add-subtracttime                         | 0.0~6000.0S      | S    | 0.1             | 20.0S                         | 1                         |
| F100             | Fifth stage speed running time                              | 0.0~6000.0S      | S    | 0.1             | 20. OS                        | Х                         |
| F101             | Selection of running direction at the first stage speed     | 0:FRD 1:REV      |      | 1               | 0                             | Х                         |
| F102             | Fifth stage speed add-subtracttime                          | 0.0~6000.0S      | S    | 0.1             | 20. OS                        | ~                         |
| F103             | Sixth stage speedrunning time                               | 0.0~6000.0S      | S    | 0.1             | 20. OS                        | Х                         |
| F104             | Selection of running direction at the sixth stage speed     | 0:FRD 1:REV      |      | 1               | 0                             | Х                         |
| F105             | Sixth stage speed add-subtracttime                          | 0.0~6000.0S      | S    | 0.1             | 20. OS                        | ~                         |
| F106             | Seventh stage speed runningtime                             | 0.0~6000.0S      | S    | 0.1             | 20. OS                        | Х                         |
| F107             | Selection of running direction at the seventh stage speed   | 0:FRD 1:REV      |      | 1               | 0                             | Х                         |
| F108             | Seventh stage speed add-subtract time                       | 0. 0~6000. OS    | S    | 0.1             | 20. OS                        | ~                         |
| F109             | Remain                                                      |                  |      |                 |                               | -                         |
| F110             | Remain                                                      |                  |      |                 |                               | -                         |

-67-

-68-

#### 6.1.8Functions of Input/Output Terminals

| Function<br>Code | Name                                                         | Range of setting                                                                                                                           | Unit | Minimum<br>Unit | Factory<br>Default<br>Setting | Operation<br>Modification |
|------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|-------------------------------|---------------------------|
| F111             | Function selection of<br>multi-function input<br>terminal X1 | 0:No function<br>1:Multistage speed<br>selection 1<br>2:Multistage speed<br>selection 2                                                    |      | 1               | 0                             | Х                         |
| F112             | Function selection of<br>multi-function input<br>terminal X2 | 3:Multistage speed<br>selection 3<br>4:Accelerating/decelerating<br>period terminals<br>5:Remain                                           |      | 1               | 0                             | Х                         |
| F113             | Function selection of<br>multi-function input<br>terminal X3 | 6:FRD JOG control<br>7:REV JOG control<br>8:Free stop control<br>9:Frequency raising<br>instruction (UP)                                   |      | 1               | 0                             | х                         |
| F114             | Function selection of<br>multi-function input<br>terminal X4 | 10:Frequency decreasing<br>instruction (DOWN)<br>11:External equipment<br>failure input<br>12:Easy PLC pause<br>13:Three-wire running      |      | 1               | 0                             | х                         |
| F115             | Function selection of<br>multi-function input<br>terminal X5 | control<br>14:DC braking instruction<br>15:External reset input<br>16:Input of decelerating<br>shutdown control                            |      | 1               | 0                             | x                         |
| F116             | Function selection of<br>multi-function input<br>terminal X6 | 17:Counter zero-clearance<br>input<br>18:Counter impulse signal<br>input (The input of counter<br>impulse signal terminal X6<br>is valid.) |      | 1               | 0                             | x                         |

## **Chapter 6 Description of Function Parameters**

6. 1. 8Functions of Input/Output Terminals (Continued)

| F117 | Function selection of<br>collector output<br>terminal Y1 | 0:Indication for "in<br>operation"<br>1:Frequency/Speed arrival<br>signal (FAR)<br>2:Frequency/Speed level<br>detecting signal (FDT)<br>3:Inverter Under-voltage<br>lockout<br>4:External Failure Input<br>5:Upper limit of output                                 | 1 | 0 | ~ |
|------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
| F118 | Function selection<br>of collector output<br>terminal Y2 | 5.0 ppc finite of output<br>frequency arrival<br>6:Lower limit of output<br>frequency arrival<br>7:Inverter zero rotary "in<br>operation" instruction<br>8:Programmable multistage<br>speed running ends<br>9:Inverter overload alarm signal<br>10:Count to output | 1 | 0 | ~ |
| F119 | Remain                                                   |                                                                                                                                                                                                                                                                    |   |   | - |
| F120 | Remain                                                   |                                                                                                                                                                                                                                                                    |   |   | - |

## 6.1.9Counter Functions

| Function<br>Code | Name                           | Range of setting                                        | Unit | Minimum<br>Unit | Factory<br>Default<br>Setting | Operation<br>Modification |
|------------------|--------------------------------|---------------------------------------------------------|------|-----------------|-------------------------------|---------------------------|
| F121             | Selection of counting<br>modes | 0 : Invalid<br>1 : Up count mode<br>2 : Down count mode |      | 1               | 0                             | х                         |
| F122             | Counting value                 | 0~9999                                                  |      | 1               | 1                             | Х                         |
| F123             | Counting coefficient           | 0~9999                                                  |      | 1               | 1                             | Х                         |
| F124             | Count to option<br>processing  | 0 : Stop counting<br>1 : Recounting                     |      | 1               | 0                             | х                         |
| F125             | Remain                         |                                                         |      |                 |                               | -                         |

-69-

-70-

## 6.1.10 Motor Parameters

| Function<br>Code | Name                       | Range of setting | Unit  | Minimum<br>Unit |                                                    | Operation<br>Modification |
|------------------|----------------------------|------------------|-------|-----------------|----------------------------------------------------|---------------------------|
| F126             | Motor rated frequency      | 50.00~400.0Hz    | Hz    | 0.01            | 50.00Hz                                            | Х                         |
| F127             | Motor rated voltage        | 1~500V           | v     | 1               | Determined in<br>accordance with<br>specifications | Х                         |
| F128             | Motor rated current        | 0.1~999A         | A     | 0.1             | Determined in<br>accordance with<br>specifications | Х                         |
| F129             | Motor rated rotating speed | 1~9999r/min      | r/min | 1               | 1450                                               | Х                         |

## 6.1.11 PID Functions

| Function<br>Code | Name                                             | Range of setting                                                                                                                                        | Unit | Minimum<br>Unit | Factory<br>Default<br>Setting | Operation<br>Modification |
|------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|-------------------------------|---------------------------|
| F130             | PID action selection                             | 0:Invalid                                                                                                                                               |      | 1               | 0                             | Х                         |
|                  |                                                  | 1:Valid                                                                                                                                                 |      |                 |                               |                           |
| F131             | Selection of PID<br>target value setting<br>mode | 0:Set by operator<br>panel V key<br>1:Set by external voltage<br>signal V(0~10VDC)<br>2:Set by external current<br>signal 1(0~20mA)<br>3:Set by 485 COM |      | 1               | 0                             | х                         |
| F132             | PID target value setting                         | 0.00~10.00V                                                                                                                                             | V    | 0.01            | 0.OV                          | Х                         |
| F133             | PID Selection of<br>feedback conditions          | 0:Set by external voltage<br>signal V (0~10VDC)<br>1:Set by external current<br>signal I (0~20mA)                                                       |      | 1               | 0                             |                           |
| F134             | PID feedback flow gain                           | 0.01~10.00                                                                                                                                              |      | 0.01            | 1.00                          | х                         |
| F135             | PID feedback polarity selection                  | 0:+<br>1:-                                                                                                                                              |      | 1               | 0                             | ~                         |
| F136             | Proportional gain (P)                            | 0.01~10.00                                                                                                                                              |      | 0.01            | 0.50                          | ~                         |
| F137             | Integral time constant TI                        | 0. 0~100. 0S                                                                                                                                            | S    | 0.1             | 10.0S                         | ~                         |
| F138             | Differential time constant DI                    | 0.0~10.0S                                                                                                                                               | S    | 0.1             | 0.0S                          | Х                         |

## **Chapter 6 Description of Function Parameters**

## 6. 1. 11 PID Functions (Continued)

| Function<br>Code | Name                                         | Range of setting | Unit | Minimum<br>Unit | Factory<br>Default<br>Setting | Operation<br>Modification |
|------------------|----------------------------------------------|------------------|------|-----------------|-------------------------------|---------------------------|
| F139             | Sampling period                              | 0.01~1.00S       | S    | 0.01            | 0.10S                         | Х                         |
| F140             | Deviation limit                              | 0.0~20%          | %    | 0.1             | 0.0%                          | ~                         |
| F141             | Sleep threshold                              | F142~100.0%      | %    | 0.1%            | 90.0%                         | ~                         |
| F142             | Revoke threshold                             | 0.0%~F141        | %    | 0.1%            | 0.0%                          | ~                         |
| F143             | Check-out time for<br>sleep/revoke threshold | 0.0~6000.0S      | S    | 0.1             | 0.0S                          | ~                         |
| F144             | Remain                                       |                  |      |                 |                               | -                         |

## 6.1.12 protecion functions

| Function<br>Code | Name                                                 | Range of setting                                        | Unit | Minimum<br>Unit | Factory<br>Default<br>Setting | Operation<br>Modification |
|------------------|------------------------------------------------------|---------------------------------------------------------|------|-----------------|-------------------------------|---------------------------|
| F145             | Overload & overheat<br>protection method             | 0:Inverter Stop Output<br>1:Current-limiting<br>running |      | 1               | 0                             | x                         |
| F146             | Inverter input open-<br>phase protection             | 0:Forbidden 1:Allowable                                 |      | 1               | 1                             | х                         |
| F147             | Over-voltage stall proof function                    | 0:Forbidden 1:Allowable                                 |      | 1               | 1                             | Х                         |
| F148             | Motor thermal relay<br>protection coefficient        | 30%~110%                                                | %    | 1               | 100%                          | Х                         |
| F149             | Select ion of automatic<br>current-limiting function | 0:Forbidden 1:Allowable                                 |      | 1               | 1                             | Х                         |
|                  | Acceleration over-current<br>stall proof level       | 40%~200%                                                | %    | 1               | 150%                          | Х                         |
| F151             | Constant speed over-<br>current stall proof level    | 40%~200%                                                | %    | 1               | 150%                          | Х                         |
| F152             | Failure self-resetting times                         | 0~3                                                     |      | 1               | 0                             | х                         |
| F153             | Failure self-resetting interval                      | 2~305                                                   | s    | 1               | 5S                            | х                         |
| F154             | Remain                                               |                                                         |      |                 |                               | -                         |

-71-

-72-

## 6. 1. 13 485 Communication Functions

| Function<br>Code | Name                              | Range of setting                                                                                                        | Unit | Minimum<br>Unit | Factory<br>Default<br>Setting | Operation<br>Modification |
|------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------|------|-----------------|-------------------------------|---------------------------|
| F155             | Local address of COM              | 1~30 (0: Main station setting)                                                                                          |      | 1               | 1                             | Х                         |
| F156             | Data format of COM                | 0: No parity<br>1:Even parity<br>2:Odd parity (1-bit starting<br>location, 8-bit data location,<br>1-bit stop location) |      | 1               | 0                             | Х                         |
| F157             | COM baud rate                     | 0:1200<br>1:2400<br>2:4800<br>3:9600<br>4:19200<br>5:38400                                                              |      | 1               | 3                             | х                         |
| F158             | Selection of COM<br>linking ratio | 0.01~10                                                                                                                 |      | 0.01            | 1.00                          | ~                         |

## 6.1.14 Other Functions

| Function<br>Code | Name                                 | Range of setting                                                                                                                                                                                                                                                                                                                              | Unit | Minimum<br>Unit | Factory<br>Default<br>Setting | Operation<br>Modification |
|------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|-------------------------------|---------------------------|
| F159             | Selection of<br>parameter protection | 0:All the parameters are<br>allowable to be modified, but<br>some parameters can notbe<br>modified when the invater is<br>in operation.<br>1:Other parameters are<br>prohibited to be modified<br>except the Fig. setting<br>frequency and this parameter.<br>2:All the parameters are<br>prohibited to be modified<br>except this parameter. |      | 1               | 0                             | ~                         |

## **Chapter 6 Description of Function Parameters**

## 6. 1. 14 Other Functions (Continued)

| Function<br>Code | Name                              | Range of setting                                         | Unit | Minimum<br>Unit | Factory<br>Default<br>Setting | Operation<br>Modification |
|------------------|-----------------------------------|----------------------------------------------------------|------|-----------------|-------------------------------|---------------------------|
| F160             | Remain                            |                                                          |      |                 |                               | -                         |
| F161             | Actual running time(S)            |                                                          | S    |                 |                               | -                         |
| F162             | Actual running time(H)            |                                                          | Н    |                 |                               | -                         |
| F163             | Frequency power failure<br>memory | 0:No memory 1:memory                                     |      | 1               | 1                             | ~                         |
| F164             | Ventilator fan control            | 0 : Fan continuous running<br>1 : Fan-controlled running |      | 1               | 1                             | Х                         |
| F165             | PWM adaptive control              | 0:Invalid 1:Valid                                        |      | 1               | 1                             | Х                         |
| F166             |                                   |                                                          |      |                 |                               | -                         |

-73-

#### **6.2 Detailed Instructions on Function Parameters**

| F000 Software Edition No. Set | ing Range:None Fa | actory Default Value: ' |
|-------------------------------|-------------------|-------------------------|

This parameter is used to view the inverter software edition. It can be displayed only and cannot be modified.

F001 Display of the inverter specifications Setting Range:None Factory Default Value: \*.\*

This parameter is used to view the specification of the inverter. The rated voltage, current and maximum carrier frequency of the inverter is related to this parameter. Please check and make sure it is the right one that you've ordered with reference to the table below.

|   | 220V series/kW               | 0.75 | 1.5 | 2.2 | 3.7  | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 |  |
|---|------------------------------|------|-----|-----|------|-----|-----|----|----|------|----|--|
| 1 | Rated current (A)            | 4.0  | 7.5 | 10  | 16.5 | 25  | 33  | 49 | 65 | 75   | 90 |  |
|   | Maximum carrier<br>frequency |      |     | 8K  | Hz   |     |     |    |    | 5K   | Hz |  |

| 380V series∕k₩               | 0.75 | 1.5 | 2.2 | 3.7 | 4.0  | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 |
|------------------------------|------|-----|-----|-----|------|-----|-----|----|----|------|----|----|----|
| Rated current (A)            | 2.3  | 3.7 | 5.0 | 8.5 | 10   | 13  | 17  | 25 | 33 | 39   | 45 | 60 | 75 |
| Maximum carrier<br>frequency |      |     |     |     | 8KH2 | 5   |     |    |    |      | 5K | Hz |    |

| 380V series/kW               | 45 | 55  | 75  | 90  | 110 | 132 | 160 | 185 | 200 | 220 | 250 | 280 |
|------------------------------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Rated current (A)            | 90 | 110 | 152 | 176 | 210 | 253 | 300 | 360 | 380 | 420 | 480 | 540 |
| Maximum carrier<br>frequency |    |     |     |     |     | 5 K | Hz  |     |     |     |     |     |

F002 Parameter initiating/Clear failure record

Setting Range: 0~2 Factory Default Value: 0

0: Indicates the parameter is in the modification status. This indicates the inverter is in the normal status of data reading and writing.

1: Removal offailure records.

When setting the parameter to "1", all the failure records will be deleted.

2: Data initiating

When setting the parameter to "2", all the parameters will restore factory defaults.

F003~F007 Remain

-75-

#### **Chapter 6 Description of Function Parameters**

| Running         Setting Range:0.00Hz~           F008         frequency setting         Upper limit of frequency | actory Default Value:50.00Hz |
|-----------------------------------------------------------------------------------------------------------------|------------------------------|
|-----------------------------------------------------------------------------------------------------------------|------------------------------|

When the frequency setting mode selects  $\blacktriangle/\checkmark$  (F009=1) on the operator panel, this parameter will be the initial setting frequency. In the condition of monitoring mode, the frequency can be modified directly by  $\blacktriangle/\checkmark$  key on the operator panel.

E Tips •The running frequency upper value is limited by the upper limit of frequency (F017) and the lower value is limited by the lower limit of frequency (F018).

 $\bullet$ When the inverter runs at programmable multistage speed, F008 is also

the set frequency at the first stage speed.

F009 Selection of frequency setting mode Setting Range:0~6 Factory Default Value: 1

This function is used to select the setting mode of inverter running frequency.

- 0: Set by the operator panel potentiometer.
- 1: Set by operator panel  $\blacktriangle/\checkmark$  key.
- 2: Set by external terminal UP/DW.
- 3: Set by the external analog voltage signal  $V(0\sim 10VDC)$  or the external potentiometer.
- 4: Set by analog current signal I(0~20mA).
- 5: Set by analog input assembly.
- 6: Set by 485 COM. (serial communication).

• See F077 for analog input assembly setting.



• When the frequency setting mode selects "2" (F009=2), which means to setthe frequency by external terminal UP/DW, one of the multi-function input terminals  $X1 \sim X6$  must select "9" which means the frequency goes up and another must select "10" which means the frequency goes down (see F111~F116 for detail). Otherwise, this function will be invalid. Then the short circuit between the selected terminals and COM terminals can lead to frequency UP/DW separately.

-76-

F010 Selection of operation Setting Range:0~2 Factory Default Value: 0

This function is used to set the control modes when the operation commands such as FWD, REV, JOG and STOPare given to the inverter.

0: Controlled by RUN or STOP key on the operator panel.

Run or stop the motor by pressing RUN, STOP or REV/JOG key on the operator panel.

1: Controlled by external terminal(s)

Run or stop the motor by connecting or disconnecting the external terminal FWD/REVCOM. 2. Controlled by 485 COM.

2. controlled by 465 cont.

Run or stop the motor through 485 COM port.

F011 Selection of motor rotating direction

Setting Range:0~2 Factory Default Value: 0

The function is used to change the running direction of the motor.

- 0: Unidirectional with the set direction
- 1: Opposite to the set direction.
- 2: No reversal.

F012 Maximum Output Setting Range:50.00~400.0Hz Factory Default Value: 50.00 Hz

This function is used to set the allowable maximum frequency of the inverter, as shown in f4 of Fig. 6-1.

The f2 in this Fig. is generally defined as the basic frequency, the output frequency corresponding to the rated voltage output.

The Vmax in this Fig. is the maximum output voltage of the inverter.

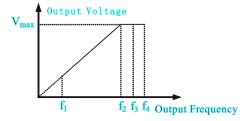



Fig. 6-1 Diagram of Voltage Frequency

-77-

#### **Chapter 6 Description of Function Parameters**

F013 Selection of V/F Curve Modes Setting Range:0~1 Factory Default Value: 0

0: Linearity (Constant torque mode)

The output voltage of the inverter is in direct proportion to frequency, which is applicable to most loads as shown in the line of Fig. 6-2.

1: Square (Quadratic torquemode)

The output voltage of the inverter is in conic to frequency, which is applicable to fans, water pumps and loads so the like, as shown in the curve of Fig. 6-2.

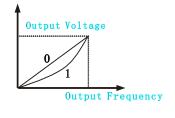
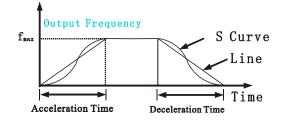



Fig. 6-2 V/F Curve




0: Linear acceleration /deceleration

The output frequency increases or decreases in accordance with constant slope.

1: S curve acceleration/deceleration

To reduce noise and vibration of the mechanical system, DO change the output frequency slowly and gradually when the acceleration/deceleration begins or ends, as shown in Fig. 6-3.





-78-

**Output Frequency** 

F015 Acceleration Time 1 Setting Range:0.1~6000.0S Factory Default Value:

F016Deceleration Time 1 Setting Range:0.1~6000.0S Factory Default Value:

Acceleration time refers to the period during which the output frequency of the inverter is  $f_2$  accelerated from 0Hz to basic frequency, as shown in t1 of Fig. 6-4.

Deceleration time refers to the period during which the output frequency of the inverter is decelerated from basic frequency to 0Hz, as shown in t2 of Fig. 6-4.

Fig. 6-4 Diagram of Acceleration/Deceleration Time

• When running at programmable multistage speed, the acceleration/deceleration time 1 participates in running as the first stage acceleration and deceleration time.

| Upper limit of<br>F017 frequency | Setting Range:F010~Maximum output<br>frequency | Factory Default Value:50.00Hz |
|----------------------------------|------------------------------------------------|-------------------------------|
| F018 Lower limit of frequency    | Setting Range:0.00Hz~ Lower limit of frequency | Factory Default Value:0.00Hz  |

The upper limit of frequency refers to the allowable maximum output frequency of the inverter, as shown in f3 of Fig. 6-5.

The lower limit of frequency refers to the allowable minimum output frequency of the inverter, as shown in fl of Fig. 6-5.

During actual running, if the set frequency is smaller than the lower limit of frequency, the inverter will reduce the value of output frequency relevantly. When it reaches the lower limit of frequency, the inverter will decide its steady state output according to the running frequency set by the lower limit of frequency.

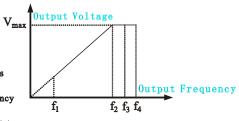



Fig. 6-5 Diagram of Upper/Lower Limit of Frequency

#### F019 Remain

Tips



#### **Chapter 6 Description of Function Parameters**

| <b>F020</b> JOG operation frequency | Setting Range:0.00~50.00Hz | Factory Default Value:10.00Hz |
|-------------------------------------|----------------------------|-------------------------------|
| F021 JOG acceleration time          | Setting Range:0.1~3600.0S  | Factory Default Value:10.0S   |
| F022 JOG deceleration time          | Setting Range:0.1~3600.0S  | Factory Default Value:10.0S   |

F020~F022 are relevant parameters set for jogging operation, as shown in Fig. 6-6, in which 11 indicates the actual JOG acceleration time, t2 indicates the JOG time, t3 indicates the actual JOG deceleration time and f1 indicates the JOG running frequency.

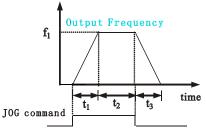



Fig. 6-6 Diagram of Acceleration/Deceleration Time



圉

Tips

• Jogging operation begins when setting the start method F23=0 and stops when setting the stop method F029=0.

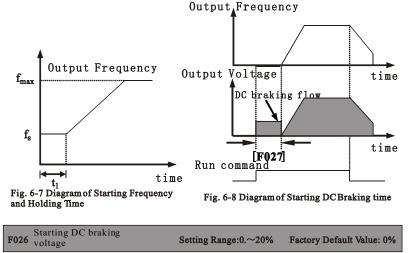
- JOG control can be performed by the operator panel, control terminals and COMports.
- Propriety is always given to JOG frequency operation when pressing the JOG key in any running state.

F023 Selection of starting modes Setting Range: 0~2 Factory Default Value: 0

0: Start at starting frequency

The inverter starts at a certain initial frequency, which is the starting frequency (F024). 1: Braking before starting

DC braking energy (defined in F026~F027) is given by the inverter to the loaded motor before starting the motor at the starting frequency.


2: Start in the mode of rotation speed tracking

Track the motor's rotation speed and direction automatically. Then take the tracked speed as its starting speed and run to the set frequency according to the acceleration and deceleration time.

| F024 Starting frequency                  | Setting Range:0.00~20.00Hz Factory Default Value:0.00Hz |
|------------------------------------------|---------------------------------------------------------|
| F025 Starting frequency maintaining time | Setting Range:0.0~30.0S Factory Default Value:0.0S      |

Starting frequency is the initial frequency when the inverter starts, as shown in fs of Fig. 6-7. To ensure enough starting torque, the starting frequency should be set properly.

Starting frequency maintaining time refers to the time kept by starting frequency when the inverter starts running, as shown int1 of Fig. 6-7.

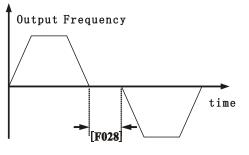


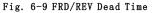
(indicates the inverter's voltage when the motor is shutdown by DC braking)

F027 Starting-up DC braking period Setting Range:0.0~20.0S Factory Default Value:0.0S

(indicates a specified period of time used to start the motor by DC braking) F026 and F027 are valid only when selecting the mode "braking before starting" (F023=1), as shown in Fig. 6-8.




• DO take into the consideration of loads before generating the DC braking voltage and deciding the braking time, for over-voltage may result in current trip. As for high-speed inertiaload, it is not advisable to start the machine by DC braking.


#### -81-

#### **Chapter 6 Description of Function Parameters**

F028FRD/REV Dead Time Setting Range:0.0~10.0S Factory Default Value:2.0S

This indicates the time interval between FRD and REV when the inverter transfers from forward running to 0Hz then to reverse running; or from reverse running to 0Hz then to forward running, as shown in Fig. 6-9.





| F029Selection of halt mode  | Setting Range:0~1 | Factory Default Value: 0   |
|-----------------------------|-------------------|----------------------------|
| 1 02) beleviton of haremous | South Brango. o   | ractory Doraute variable o |

0: Decelerating Stop

IWhen stop command is received, the inverter will drop off output frequency in accordance with set decelerating mode and decelerating time till the frequency falls to zero and stop.

1: Free stop

Once stop command is received, the inverter will discard output immediately and the load will stop freely in accordance with the rule of mechanical inertia.



•If decelerating stop (F029=0) is selected, the inverter will discard output upon receiving of stop command. When the motor decelerates to **shutdown DC braking starting frequency** (F030) (which indicates the inverter's starting frequency when the motor is shutdown by DC braking), the inverter will stop by braking according to **shutdown DC braking voltage** (which indicates the inverter's voltage when the motor is shutdown by DC braking) set by F031 and **shutdown DC braking time** (which indicates aspecified period of time used to stop the motor by DC braking) set by F032.

| <b>F030</b> Shutdown DC braking starting frequency | Setting Range: $0.00 \sim 20.00$ Hz Factory Default Value: $3.00$ Hz |  |
|----------------------------------------------------|----------------------------------------------------------------------|--|
| <b>F031</b> Shutdown DC braking voltage            | Setting Range: 0~20% Factory Default Value: 0%                       |  |
| <b>F032</b> Shutdown DC braking time               | Setting Range: 0.0~30.0S Factory Default Value:0.0S                  |  |

F030 indicates the frequency at which DC braking starts working during decelerating stop of the inverter.

F031 indicates the percentage of the inverter's output voltage when the motor is shutdown by DC braking to the inverter's rated output voltage.

F032 indicates the holding time of the motor's shutdown by DC braking.

• Oversetting of the inverter's voltage when the motor is shutdown by DC braking may easily lead to inverter tripping. DO increase the voltage bit by bit.

• If the specified period of time used to stop the motor by DC braking is set to 0.0s, then no DC braking will proceed.

#### F033 Remain

[律

Tips

| F034 Selection of PowerOn Se display items  | tting Range: $0 \sim 13$ Factory Default Value: 0 |
|---------------------------------------------|---------------------------------------------------|
| This function is used to set the display it | ems when the inverter is just powered on.         |
| 0: Current output frequency;                | 1: Current set frequency;                         |
| 2: Output current;                          | 3: Output Voltage;                                |
| 4: Motor rotating speed;                    | 5: Linear speed of running;                       |
| 6: Linear speed setting;                    | 7: DC bus bar voltage;                            |
| 8: Power module temperature;                | 9: PID target value;                              |
| 10: PID feedback value;                     | 11: Counter value;                                |
| 12: Cumulative time of current running      | (Hours); 3: Input terminal status                 |

#### F035 Remain

F036 Remain

# **Chapter 6 Description of Function Parameters** Display coefficient of

| F037 | linear speed                                  | Setting Range: 0.01~100.0 Factory Default Value:1.00   |   |
|------|-----------------------------------------------|--------------------------------------------------------|---|
| F038 | Display coefficient of<br>closed-loop control | Setting Range: 0.001~10.00 Factory Default Value:1.000 | D |
|      |                                               |                                                        |   |

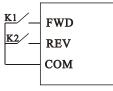
F037 is used to correct the display error of linear speed. It has no effect on actual rotation speed.

F038 is used to correct the display error of PID feed or feedback flow under closed-loop control. It has no effect on closed-loop PID regulation.

F039 Selection of REV/JOG Setting Range: 0~1 Factory Default Value: 1 key function

This function is used to set the function of REV/JOG key on operator panel.

- 0: Select 0 to set REV function.
- 1: Select 1 to set JOG function.

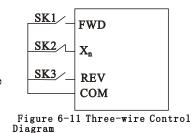

Two-wire/Three-wire F040 operating selection Setting Range: 0~2 Factory Default Value: 0

This function is used to select three operation modes of the inverter controlled by external control terminals.

- 0: Two-wire controlmode 1, as shown in Table 6-3 and Fig. 6-10.
- 1: 1: Two-wire control mode 2, as shown in Table 6-3 and Fig. 6-10.

#### Table 6-3 Two-wire Control Operating Instruction

| Switc | h status | Two-wire<br>control 1      | Two-wire<br>control 2      |                                                  |
|-------|----------|----------------------------|----------------------------|--------------------------------------------------|
| K2    | K1       | Operating<br>instruction 1 | Operating<br>instruction 2 |                                                  |
| 0FF   | OFF      | STOP                       | STOP                       | K1 FWD                                           |
| ON    | OFF      | REV                        | STOP                       |                                                  |
| 0FF   | ON       | FRD                        | FRD                        | СОМ                                              |
| ON    | ON       | STOP                       | REV                        | Fig. 6-10 Two-wire Control<br>1/2 Wiring Diagram |




Note: ON indicates switch on; OFF indicates switch off.



#### 2: Three-wire control mode

Fig. 6-11 is a three-wire control diagram, in which "SK1" represents FRD switch, "SK2" represents stop switchand "Xn" represents a three-wire operating control terminal that can be any one of the multi-function terminal X1~X6 (refer to parameter F111~F116) by selecting "13"



 F041 Acceleration time2
 Setting Range: 0.0~6000.0S
 Factory Default Value: accordance with specifications. Determined in

 F042 Deceleration time2
 Setting Range: 0.0~6000.0S
 Factory Default Value: accordance with specifications. Determined in

F041 and F042 refer to acceleration/deceleration time controlled by the inverter external terminals by selecting "4" of the multifunction terminal X1 $\sim$ X6 (F111 $\sim$ F116).

• The acceleration/deceleration time of multi-speed operation and jog operation is out of the control of external input terminals and can be set only by its own parameters.

F043 Remain

F044 Remain

F045 Selection of automatic energysaving operation

Setting Range: 0~1 Factory Default Value: 0

When selecting automatic energy-saving operation, the inverter will automatically regulate the motor's output voltage by detecting the load current, so as to get minimum product (electric power) of voltage and current and realize energy saving.

1: Forbidden 1: Allowable



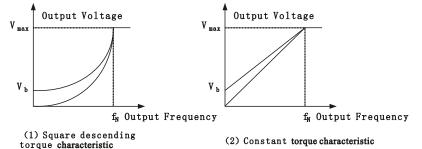
This function is applicable to loads like fans, water pumps and etc.
Automatic energy-saving operation is invalid during acceleration and deceleration.

#### **Chapter 6 Description of Function Parameters**

# F046<sup>Slip compensation</sup> Setting Range: 0.0~20.0% Factory Default Value:0.0%

During actual rotation, a motor's slip is influenced by variation in load torque, which causes deviation of actual speed from the expected value. With slip compensation function, the inverter's output power can be adjusted automatically with load torque fluctuation of the motor, which can compensate off-speed arising from load fluctuation of the motor and thus improve accuracy of speed.

This parameter is the percentage of slip compensation to rated slip.


| F047 AVR function selection    | Setting Range: 0~1       | Factory Default Value: 0                |
|--------------------------------|--------------------------|-----------------------------------------|
| 1: Forbidden                   |                          |                                         |
| 1: Allowable                   |                          |                                         |
| AVD means automatic walters re | aulation When domination | a a avera la atruca an immet realta a a |

AVR means automatic voltage regulation. When deviation occurs between input voltage and rated input voltage of the inverter, this function is applied to stabilize the output voltage of the inverter through auto regulation of duty factor of PWM.

This function is invalid in case the output command voltage is higher than the input power supply voltage.

F048 Torque lifting Setting Range: 0~30% Factory Default Value; accordance with specifications.

Excitation voltage falls in the zone of low frequency rotation. So, it is necessary to compensate excitation current of the motor and enhance the torque in the state of low frequency rotation (improve V/F characteristic), as shown in Fig.6-12.



#### Fig. 6-12 Torque Lifting Diagram

The "Vb" in the figure refers to manual torque lifting voltage; "Fn" refers to rated frequency of the inverter.

-86-



• Too hightorque lifting may result in over-current protection of the inverter which may lead to failure starting of the motor. When this occurs, the set value shall be decreased properly.



•Heat dissipation will be less effective when a motor runs at a low frequency for a long period. Oversetting of torque lifting value in this case may speedup this phenomena and lead to burnout of the motor. DOkeep in mind to take a forced method to release heat from the exterior of motor or perform derating before use.

F049 Carrier frequency Setting Range: 1.0~13KHz Factory Default Value: accordance with specifications.

Determined in

This function is used to set the carrier frequency of the inverter's output PWM wave and should be properly regulated. The maximum value of carrier frequency is determined in accordance with power specifications. Refer to Fig. 6-13 for details on carrier frequency value, electromagnetic noise, leakage current and heating conditions.

| Carrier<br>frequency | electromagn<br>etic noise | Leakage<br>current | Heating<br>value | Interference |
|----------------------|---------------------------|--------------------|------------------|--------------|
| 1. OKHz              | High                      | Low                | Low              | Low          |
| 12 KHz               | Low                       | High               | High             | High         |

• Due to richultra harmonics existed in output current, under setting of carrier frequency will result in distortion of the waveform of output current, which may cause largernoise of motor, but less loss and

Fig. 6-13 Diagram of Carrier Frequency



Cautions

lower temperature rise instead. • Increasing the set value of carrier frequency can reduce noise of the motor, but the inverter's temperature will rise due to greater loss of power elements. If the carrier frequency value is higher than factory default setting, then the inverter shall be derated before use.

-87-

## **Chapter 6 Description of Function Parameters**

| F050 Leap frequency 1                    | Setting Range: Lower limit of frequency~<br>Upper limit of frequency   | Factory Default Value:0.00Hz |
|------------------------------------------|------------------------------------------------------------------------|------------------------------|
| <b>F051</b> Range of leap frequency 1    | Setting Range:0.00~10.00Hz                                             | Factory Default Value:0.00Hz |
| F052 Leap frequency 2                    | 2 Setting Range: Lower limit of frequency~<br>Upper limit of frequency | Factory Default Value:0.00Hz |
| <b>F053</b> Range of leap<br>frequency 2 | Setting Range:0.00~10.00Hz Factor                                      | ry Default Value:0.00Hz      |

The purpose of F050~F053 setting is to avoid point of resonant frequency of mechanical load so that the second point of leap frequency of the inverter can be set. If the leap range is set to 0, then no leap function performs at the

corresponding points of leapfrequency.

The inverter's output frequency can act leap operation nearby some frequency points.

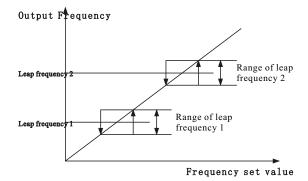



Fig. 6-14 Diagram of Leap Frequency and Range



•During accelerating and decelerating running, the inverter can not skip leap frequency.

•Do not settwo leap frequency ranges overlaid or inlaid.

F054 Reference frequency of acceleration/deceleration Setting Range:10.0~400.0Hz Factory Default Value:50.00Hz

This function is applied to set corresponding frequency of acceleration/deceleration time.

 F055
 Selection of retry mode
 Setting Range:0~1
 Factory Default Value: 0

 (restart after instantaneous power failure)

F056 Wait time for retry Setting Range:0.0~20.0S Factory Default Value:1.0S

#### F055 0: Disable

WARNING

1: Enable

This function decides whether the inverter can start running automatically or not and the wait time for auto running under different modes of control when the inverter is electrified after power failure. Select "0" (disable), the inverter will not run automatically when it is energized after power failure.

Select "1" (enable), if starting criteria permits, the inverter will restart automatically by way of rotation speed tracing in a time set by F056 when it is energized after power failure.

During the period of waiting for restarting, it is invalid to input any operating instruction. For example, the inverter will automatically abort restarting by rotation speed tracing and restore to the status of normal stop is stop command is given during this period.

Whether the inverter will run automatically or not is co-decided by this set of parameter setting, the running status at the moment of power failure and the control commandat the moment of power on.

•If the Retry Mode which means "restart after instantaneous power failure" is enabled, an unanticipated sudden restart will happen once the equipment is energized, which may result in heavy loss of property, serious injury or death to personnel in some cases (i.e., the inverter restarts due to disconnection of input power supply undone before performing a maintenance of mechanical load). DO put a warning sign in an eye-catching place before the equipment to avoid sudden restart of the equipment.

## **Chapter 6 Description of Function Parameters**

F057 Frequency Arrival Checkout Range (FAR) Setting Range:0.00~15.00Hz Factory Default Value:5.00Hz

If the inverter's output frequency is within the range of positive/negative checkoutrange of the set frequency, the selected output terminal will output valid signal (low power level), as shown in Fig. 6-15.

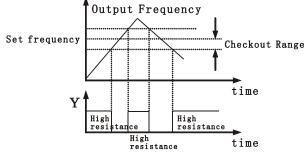



Fig. 6-15 Frequency Arrival Checkout Diagram

| F058 FDT level Setting Range: 0.00Hz~upper limit of frequency |      | Factory Default Value:10.00Hz |                               |
|---------------------------------------------------------------|------|-------------------------------|-------------------------------|
| F059 FDT lagged va                                            | alue | Setting Range: 0.00~30.00Hz   | Factory Default Value: 1.00Hz |

This set of parameters is applied to set the frequency detection level. If the output frequency rises and exceeds the set value of FDT, then open collector signal (low power level) will be output; if the output frequency falls to the FDT removal of power level, then invalid signal (high resistance) will be output, as shown in Fig. 6-16.

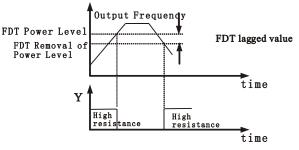



Fig. 6-16 Frequency Level Detection Diagram

-90-

-89-

| F060 Overload Pre-alarm Level                 | Setting Range:20~110%   | Factory Default Value:100%  |
|-----------------------------------------------|-------------------------|-----------------------------|
| <b>F061</b> Overload Pre-alarm<br>Action Time | Setting Range:0.0~15.05 | Factory Default Value: 1.0S |

Overload pre-alarm level defines the current threshold of overload pre-alarm action. Its setting range is the percentage in respect to rated current. Generally, the overload pre-alarm level should be set lower than overload protection level.

If the output current reaches the overload pre-alarm level and its durative level exceeds the set time of overload pre-alarm action, then overload pre-alarmacts, as shown in Fig. 6-17.

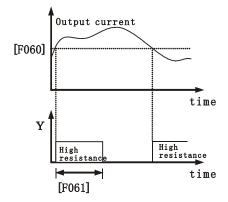



Fig. 6-17 Diagram of Overload Pre-alarm Action

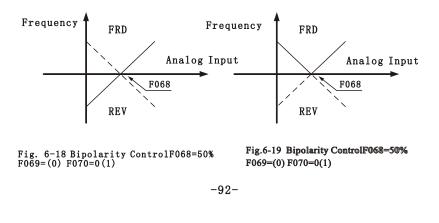
| F065 Upp | er limit of analog<br>age (V) input  | Setting Range:F064~10.0V F | actory Default Value:10.0V |
|----------|--------------------------------------|----------------------------|----------------------------|
| F064 Lov | ver limit of analog<br>age (V) input | Setting Range:0.0V~F065    | Factory Default Value:0.0V |
| F063     | Remain                               |                            |                            |
| F062     | Remain                               |                            |                            |

F064 and F065 are applied to set the maximum and minimum values of external analog input voltage V, which should be set in the light of actual conditions of input signals.

## **Chapter 6 Description of Function Parameters**

| <b>F066</b> Lower limit of analog current (I) input | Setting Range: $0.0 \text{mA} \sim F067$ Factory Default Value: $4.0 \text{mA}$ |
|-----------------------------------------------------|---------------------------------------------------------------------------------|
| <b>F067</b> Lower limit of analog current (I) input | Setting Range:F066~20.0mA Factory Default Value:20.0mA                          |

F066 and F067 are applied to set the maximum and minimum values of external analog input current I, which should be set in accordance with actual situation of input signal.


| F068 | Bipolarity zero offsetof<br>analog input                                               | Setting Range:0~100% | Factory Default Value:0% |
|------|----------------------------------------------------------------------------------------|----------------------|--------------------------|
| F069 | Corresponding frequency<br>biasing direction of thelower<br>limit of analog input      | • •                  | Factory Default Value:0  |
| F070 | Biasing direction of the frequence<br>corresponding to the upper limit<br>analog input | of Setting Range:0~1 | Factory Default Value:0  |

This function is used to set the bipolarity control of input analog signal.

Bipolarity control indicates the inverter's output phase sequence or the motor's diversion is decided by the polarity of input analog signal. At this moment, other diversion orders are neglected by the inverter. If the analog signal is higher than the percentage of zero offset and the frequency biases positive/negative, then positive/negative phase sequence will be output and the motor forwards/reverses accordingly. If the analog signal is lower than the percentage of zero offset and the frequency biases negative/positive, then negative/positive phase sequence will be output and the motor reverses/forwards accordingly.

Bipolarity control function is valid only if the setting mode of frequency selects analog signal input (F009=3 or 4) and the frequency setting value is decided by the input analog signal at this point.

The correlation between analog input signal and set frequency with different settings is as shown in Fig. 6-18 & 6-19.



If bipolarity control is selected, the parameter F068 must be greater than 0%, or it is invalid. The default setting is 0% which means invalid bipolarity control at this point. If F068 is greater than 0%, then the analog input signal within F064 (F066)  $\sim$ F065 (F067) \*F068 $\sim$ F065 (F067) will be linear with the frequency within F071 $\sim$ F072, and the output phase sequence of the inverter will be decided by F069 or F070.

If setting F069 and F070 to "0" and "1" separately, then the analog signal within F064 (F066)  $\sim$  F065 (F067) \*F068 proceeds forward and the frequency fluctuates within F071 $\sim$ 0.00Hz; while the analog signal within F065 (F067) \*F068 $\sim$ F065 (F067) proceeds reverse and the frequency fluctuates within 0.00Hz to F072. If setting F069 and F070 to "1" and "0" separately, the above action will reverse.

If setting F069 and F070 to "0", "0" or "1", "1", then the motor proceeds forward or reverse, but the frequency still fluctuates with analog input signal and the frequency change manner remains the same as the one that proceeds forward and reverse.

| <b>F071</b> Corresponding frequency of minimum analog input | Setting Range: | 0.00Hz~upper<br>limit of frequency | Factory Default Value:0.00Hz  |
|-------------------------------------------------------------|----------------|------------------------------------|-------------------------------|
| <b>F072</b> Corresponding frequency of maximum analoginput  | Setting Range  | 0.00Hz~upper<br>limit of frequency | Factory Default Value:50.00Hz |

This set of parameters is used to set the correlation between external analog input quantity and the set frequency. Therelationship between set frequency and frequency setting signal after treatment of filtering and gain is shown in Fig. 6-20. These two kinds of signals can realize the characteristics of direct action and reaction separately. "fmax" and "fmin" in this figure refer to the frequency corresponding to the upper limit of input and the lower limit of input respectively.

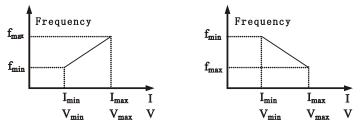
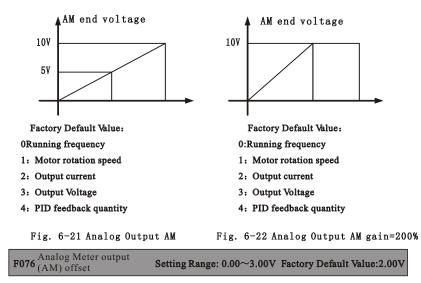



Fig. 6-20 Relation Curve of Input Quantity against Set Frequency


## **Chapter 6 Description of Function Parameters**

| F073       Analog input signal delay period       Setting Range:0.1~5.0S       Factory Default Value:0.5 | <b>F073</b> Analog input signal delay period | Setting Range:0.1~5.0S Factory Default Value:0.5S |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------|
|----------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------|

This parameter is used to regulate the delay period of analog input signal.

| F074 Analog meter output (AM)      | Setting Range:0~4     | Factory Default Value: 0   |
|------------------------------------|-----------------------|----------------------------|
| F075 Analog meter output (AM) gain | Setting Range:50~200% | Factory Default Value:100% |

This function is used to indicate the content of the output signal of analog output end (AM) and the value of output voltage, as shown in Fig. 6-21 and Fig. 6-22



Due to diversity of device parameters and variance in operating ambient, zero driftexists in the output voltage of analogoutput AM terminal. This parameter is used to compensate the influence arising from zero drift. E.g., if the zero offset of AM output is 0.20V, just set this parameter to - 0.20V to makeup for it. The detail compensation value should be set in the light of actual conditions.

**F077** Combined selection of analog input

Setting Range:0~3 Factory Default Value: 0

When F009 selects analog input combined setting (F009=5), this

function is used to select its combined mode.

0:External voltage V+External current I

1:External voltage V-External current I

2:External current I+External voltage V

3:External current I-External voltage V

#### F078 Remain

F079 Remain

 
 F080
 Selection of programmable multi-speed operation
 Setting Range:0~4
 Factory Default Value: 0

0: Non operation

1: Single cycling

The multi-speed running of the inverter stops automatically after a cycle and starts only if the run command is given again. E.g., suppose the running time at some stage is 0, then the inverter will skip to then ext stage directly, as shown in Fig. 6-23.

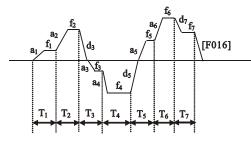



Fig. 6-23 Diagram of Programmable/Multi-speed Single-cycle Operation

-95-

#### **Chapter 6 Description of Function Parameters**

fl $\sim$ f7 in this figure refers to running frequency at stage 1 $\sim$ 7 separately.

T1 $\sim$ T7 refers to running time at stage 1 $\sim$ 7 separately.

a1 $\sim$ a6 refers to acceleration time at stage 1 $\sim$ 7 separately.

d3, d5 and d7 refer to the deceleration time at stage 3,5 and 7 separately.

2: Continuous cycling

This indicates the multi-speed running of the inverter recycles repeatedly and stops only if stop command is input, as shown in Fig. 6-24.

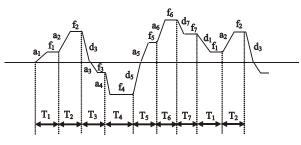



Fig. 6-24 Diagram of Programmable/Multispeed Continuous Cycling Operation

3: Maintaining the ultimate value after singe cycling

After finishing a single cycle, the inverter will run according to the set frequency and direction of the latest multi-speed running (except stage 0), as shown in Fig. 6-25.

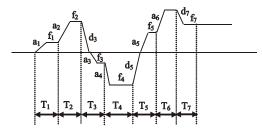
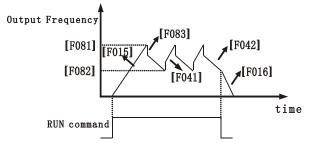




Fig. 6-25 Diagram of maintaining theultimate value after programmable/multi-speed single Cycling Operation

-96-

#### 4: Wobbulation Control

The output frequency of the inverter changes periodically during the preset accelerating/decelerating time. This function is especially applied to textile and chemical fiber system in which rotation speed changes due to differential diameter in the font and at the back of a bobbin, as shown in Fig. 6-26.



#### Fig. 6-26 Wobbulation Running Diagram

| <b>F081</b> <sup>1 st-1</sup><br>runr     | stage speed<br>ning frequency  | Setting Range: | Lower limit of frequency<br>Upper limit of frequency  | <sup>y~</sup> Factory Default | Value:5.00 Hz |
|-------------------------------------------|--------------------------------|----------------|-------------------------------------------------------|-------------------------------|---------------|
| <b>F082</b> <sup>2nd</sup> <sub>run</sub> | -stage speed<br>ning frequency | Setting Range  | Lower limit of frequency~<br>Upper limit of frequency | Factory Default               | Value:10.00Hz |
| <b>F083</b> $\frac{3^{rd}}{rur}$          | stage speed<br>ming frequency  | Setting Range: | Lower limit of frequency~<br>Upper limit of frequency | Factory Default               | Value:20.00Hz |
| <b>F084</b> 4 <sup>rd</sup> -<br>run      | stage speed<br>ning frequency  | Setting Range: | Lower limit of frequency~<br>Upper limit of frequency | Factory Default V             | /alue:30.00Hz |
| <b>F085</b> $\frac{5^{rd}}{run}$          | stage speed<br>ning frequency  | Setting Range: | Lower limit of frequency~<br>Upper limit of frequency | Factory Default               | Value:40.00Hz |
| <b>F086</b> $\frac{6^{rd}}{run}$          | stage speed<br>ning frequency  | Setting Range: | Lower limit of frequency~<br>Upper limit of frequency | Factory Default               | Value:45.00Hz |
| <b>F087</b> 7 <sup>rd</sup> -<br>run      | stage speed<br>ning frequency  | Setting Range: | Lower limit of frequency~<br>Upper limit of frequency | Factory Default               | Value:50.00Hz |

F081~F087 are used to set the frequency of programmable/multistage speed running. See Fig. 6-24 for details.

-97-

## **Chapter 6 Description of Function Parameters**

| F088 | 1 <sup>st</sup> -stage speed<br>running time                      | Setting Range:0.0~6000.0S  | Factory Default Value:20.0S |
|------|-------------------------------------------------------------------|----------------------------|-----------------------------|
| F089 | 1 <sup>st</sup> -stage speed<br>running direction                 | Setting Range:0~1          | Factory Default Value: 0    |
| F090 | 1 <sup>st</sup> -stage speed<br>acceleration/deceleration<br>time | Setting Range: 0.0~3600.0S | Factory Default Value:20.0S |

 $F088 \sim F090$  are used to set the first stage speedrunning time, direction, acceleration and deceleration time for programmable/multistage speed running.

| F091 | 2 <sup>st</sup> -stage speed<br>running time                      | Setting Range:0.0~3600.0S | Factory Default Value: 20.0S |
|------|-------------------------------------------------------------------|---------------------------|------------------------------|
| F092 | 2 <sup>st</sup> -stage speed<br>running direction                 | Setting Range:0~1         | Factory Default Value: 0     |
| F093 | 2 <sup>st</sup> -stage speed<br>acceleration/deceleration<br>time | Setting Range:0.0~3600.0S | Factory Default Value: 20.0S |

 $F091 \sim F093$  are used to set the second stage speedrunning time, direction, acceleration and deceleration time for programmable/multistage speed running.

| F094 | 3 <sup>st</sup> -stage speed<br>running time                      | Setting Range:0.0~3600.0S  | Factory Default Value: 20.0S |
|------|-------------------------------------------------------------------|----------------------------|------------------------------|
|      | 3 <sup>st</sup> -stage speed<br>running direction                 | Setting Range:0~1          | Factory Default Value: 0     |
| F096 | 3 <sup>st</sup> -stage speed<br>acceleration/deceleration<br>time | Setting Range: 0.0~3600.0S | Factory Default Value: 20.0S |

F094 $\sim$ F096 are used to set the third stage speed running time, direction, acceleration and deceleration time for programmable/multistage speed running.

| <b>F097</b> 4 <sup>st</sup> -stage speed running time                   | Setting Range:0.0~3600.0S | Factory Default Value: 20.0S |
|-------------------------------------------------------------------------|---------------------------|------------------------------|
| <b>F098</b> <sup>4<sup>st</sup>-stage speed</sup> running direction     | Setting Range:0~1         | Factory Default Value: 0     |
| <b>F099</b> 4 <sup>st</sup> -stage speed acceleration/deceleration time | Setting Range:0.0~3600.0S | Factory Default Value: 20.0S |

 $F097 \sim F099$  are used to set the fourth stage speed running time, direction, acceleration and deceleration time for programmable/multistage speed running.

| <b>F100</b> $\frac{5^{st}\text{-stage spee}}{\text{running time}}$ | d Setting Range:0.0~360                 | 0.0S Factory Default Value: 20.0S |
|--------------------------------------------------------------------|-----------------------------------------|-----------------------------------|
| <b>F101</b> <sup>5<sup>st</sup>-stage spe</sup><br>running dire    | ed Setting Range:0                      | $\sim 1$ Factory Default Value: 0 |
| <b>F102</b> 5 <sup>st</sup> -stage speed<br>acceleration/d<br>time | d<br>deceleration Setting Range:0.0~360 | 0.0S Factory Default Value: 20.0S |

## $F100 \sim F102$ are used to set the fifth stage speed running time, direction, acceleration and deceleration time for programmable/multistage speed running.

| <b>F103</b> <sup>6<sup>st</sup>-stage speed</sup> running time                | Setting Range:0.0~6000.0S | Factory Default Value: 20.0S |
|-------------------------------------------------------------------------------|---------------------------|------------------------------|
| <b>F104</b> <sup>6<sup>st</sup>-stage speed</sup> running direction           | Setting Range:0~1         | Factory Default Value: 0     |
| 6 <sup>st</sup> -stage speed<br><b>F105</b> acceleration/deceleration<br>time | Setting Range:0.0~6000.0S | Factory Default Value: 20.0S |

F103~F105 are used to set the sixth stage speed running time, direction, acceleration and deceleration time for programmable/multistage speed running.

| F106          | 7 <sup>st</sup> -stage speed<br>running time                      | Setting Range:0.0~6000.0S  | Factory Default Value: 20.0S |
|---------------|-------------------------------------------------------------------|----------------------------|------------------------------|
|               | 7 <sup>st</sup> -stage speed<br>running direction                 | Setting Range:0~1          | Factory Default Value: 0     |
| F108          | 7 <sup>st</sup> -stage speed<br>acceleration/deceleration<br>time | Setting Range: 0.0~6000.0S | Factory Default Value: 20.0S |
| <b>P10</b> C. |                                                                   |                            |                              |

 $F106{\sim}F108$  are used to set the sixth stage speed running time, direction, acceleration and deceleration time for programmable/multistage speed running.

| F109 | Remain |
|------|--------|
| F110 | Remain |

| F111 | Selection of multi-function input terminal X1 | Setting Range:0~20 | Factory Default Value: 0 |
|------|-----------------------------------------------|--------------------|--------------------------|
| F112 | Selection of multi-function input terminal X2 | Setting Range:0~20 | Factory Default Value: 0 |
| F113 | Selection of multi-function input terminal X3 | Setting Range:0~20 | Factory Default Value: 0 |
| F114 | Selection of multi-function input terminal X4 | Setting Range:0~20 | Factory Default Value: 0 |
| F115 | Selection of multi-function input terminal X5 | Setting Range:0~20 | Factory Default Value: 0 |
| F116 | Selection of multi-function input terminal X6 | Setting Range:0~20 | Factory Default Value: 0 |

The external inputterminals  $X1 \sim X6$  are multi-function input terminals. The function of  $X1 \sim X6$  can be selected by setting the value of F111  $\sim$  F116. See detailed info on set value and function instruction below:

## **Chapter 6 Description of Function Parameters**

- 0: No function
- 1: Selection of multistage speed1;
- 2: Selection of multistage speed2;
- 3: Selection of multistage speed3;

The ON/OFF pairselected by multi-speed running Stage  $1\sim3$  can define maximal 7 speed stages of running. Multi-speed control terminals are selected by the parameters F111 $\sim$ F116. The multi-speed control of external terminals can be operated together with RUN command. The multistage speed of terminals is shown in Table6-4 below.

| Multistage<br>speed 1 | Multistage<br>speed 2 | Multistage<br>speed 3 | Selection of multistage speed           |                                                     |
|-----------------------|-----------------------|-----------------------|-----------------------------------------|-----------------------------------------------------|
| OFF                   | OFF                   | OFF                   | The zero stage of<br>multistage speed   | The running frequency at this stage is set by F080. |
| ON                    | OFF                   | OFF                   | The first stage of<br>multistage speed  | The running frequency at this stage is set by F081. |
| OFF                   | ON                    | OFF                   | The second stage of<br>multistage speed | The running frequency at this stage is set by F082. |
| ON                    | ON                    | 0FF                   | The third stage of<br>multistage speed  | The running frequency at this stage is set by F083. |
| OFF                   | OFF                   | ON                    | The fourth stage of<br>multistage speed | The running frequency at this stage is set by F084. |
| ON                    | OFF                   | ON                    | The fifth stage of multistage speed     | The running frequency at this stage is set by F085. |
| OFF                   | ON                    | ON                    | The sixth stage of<br>multistage speed  | The running frequency at this stage is set by F086. |
| ON                    | ON                    | ON                    | The seventh stage of multistage speed   | The running frequency at this stage is set by F087. |

Note: ON indicates connection to COM terminal and OFF indicates break from COM terminal.

Fig. 6-4 Diagram of Multistage Speed Selection

4: Acceleration/Deceleration time terminal:

This is applied to external terminal to select the acceleration/deceleration time.

5: Remain

- 6: FRD JOG control;
- 7: REV JOG control;

The above two control methods refer to FRD/REV JOG running control under the mode  $% \mathcal{A} = \mathcal{A} + \mathcal{A}$ 

of external terminal control.

8: Free stop control:

This refers to free stop control under the mode of external terminal control.

-99-

#### 9: Frequency UP Command:

10: Frequency DOWN Command:

The commands in 9 and 10 are used to realize control over frequency up or down, and proceed remote control over operatorpanel.

11: External Failure Input:

This terminal paves the way for the inverter to keep an eye on external equipment failure by inputting failure signals of external equipment.

12: Easy PLC Pause:

Easy PLC pause is applied to give pause control over PLC process which is in operation. The equipment runs at 0 frequency if this terminal is valid and PLC running does not count the time.

13: Three-wire running control;

Refer to the parameter F040.

14: DC braking command:

DC braking command isused to applyDC braking on themotor in the course of stop, to realize emergency shut-down and accurate positioning of themotor. See the parameter F030~F032 for details.

15: External reset input:

When failure alarm occurs, this terminal is used to perform failure reset of the inverter. This function is inaccord with STOPkey on the operator panel.

16: Remain

17: This is used to give a control over decelerating stopunder the mode of external terminal control.

18: Remain

19: Once this function is set, connect this terminal to COM terminal and the counter value will be "0".

20: Counter pulse signal input:

This is used to receive the external pulse signal which is served as the count value (This function can be set only by the multifunction terminal X6).

## **Chapter 6 Description of Function Parameters**

| F117 | Function selection of collector<br>output terminal Y1 | Setting Range:0~10 | Factory Default Value: 0 |
|------|-------------------------------------------------------|--------------------|--------------------------|
| F118 | Function selection of collector<br>output terminal Y2 | Setting Range:0~10 | Factory Default Value: 0 |

This set of parameters defines the contents of the open collector output terminals Y1 and Y2.

0: Inverter "in operation" signal:

This indicates the outlet indication signal of the inverter in running state.

1:Frequency arrival (FAR) signal:

Refer to the function declaration

2:Frequency level detection (FDT)signal:

Refer to the function declaration of F058.

3: Inverter under-voltage lockout:

When DC bus voltage is lower than the set level of undervoltage, LED displays "P.oFF" and the terminal "Y" outputs indication signal.

4: External down:

When failure signal of external equipment is received through input terminal, the inverter will perform trip alarm and the terminal "Y" outlets indication signal. Under the mode of non-key operation control, press the STOPkey and the terminal "Y" outputs indication signal.

5: Upper limit of output frequency arrival:

This refers to the indication signal outletby the inverter when the running frequency reaches the upper limit of frequency.

6: Lower limit of output frequency arrival:

This refers to the indication signal outletby the inverter when the running frequency reaches the lower limit of frequency.

7:Inverter null revolution "in service" instruction

This indicates the indication signal outlet by the inverter is still in the state of operation though the output frequency of the inverter is 0.

8: Easy PLC multistage running ends:

When a PLC multi-speed operating cycle is finished, avalid low power level pulse signal will be output at this port.

9: Inverter overload alarm signal:

When the inverter's output current exceeds overload alarm level, an effective lowpower signal will be output after waiting for a preset alarm delay period.

10: Count to output:

The inverter willoutput this signal whencount value reaches thesetting value if counting function is enabled.

-101-



When selecting counting function enabled, then count pulse must be input by the multifunction terminal X6, and X6 must select pulse input function (refer to F111~F116 Function Selections for details), or this function will be invalid.

- 0: Counting function disabled.
- 1: Counting function enabled, up count mode.
- 2: Counting function enabled, down count mode.

F122Count value

Setting Range:0~9999 Factory Default Value: 1

This function is used to set pre-value for the counter. If up count mode is selected, the counter will stop counting and perform counting to processing action when count value is equivalent to preset value. If down count mode is selected, the counter will stop counting and perform counting to processing action when count value is set to 1.

#### F123Counting coefficient Setting Range:0~9999 Factory Default Value: 1

This function is used to set unit value for each count pulse, and proceed counting on relative items.

#### F124counting to processing selection Setting Range:0~3 Factory Default Value: 0

This function is applied to counting to action selection of the counter.

- 0: Stop counting
- 1: Recounting



Counter Zero-clearance Operation:

• Choose one of the external multifunction terminals X1~X6, set this terminal with counterzero-clearance function and then connect this terminal to COM terminal.

-103-

## **Chapter 6 Description of Function Parameters**

#### F125 Remain

| F126 Motor's rated frequency | Setting Range:50.00~400  | 0.0Hz Factory Default Value:50.00Hz                                  |
|------------------------------|--------------------------|----------------------------------------------------------------------|
| F127 Motor's rated voltage   | Setting Range:1~500V     | Factory Default Value: Determined in accordance with specifications. |
| F128 Motor's rated current   | Setting Range:0.1~999.0A | Factory Default Value: Determined in accordance with specifications. |
| F129 Motor's rated rotation  | speed Setting Range:1~9  | 99999r/mm Factory Default Value: 145                                 |

F126~F129 are used to set parameters for the controlled motor. Do set them properly according to the data of specifications label on the motor.

#### F130 PID action selection Setting Range:0~1 Factory Default Value: 0

0: PID regulation not performed.

1: PID regulation performed.

PID regulation function is described below: The built-in PID controller in the inverter detects physical quantity (feedback quantity) through the sensor of the object under control and compares this quantity to the target value of the system. If deviation exists between them, then PID regulation is used to remove deviation. It is a usual process control method used to keep the feedback quantity in accord with the target value. This system structure is asshown in Fig. 6-27.

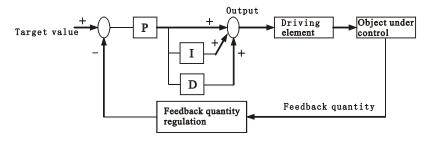



Fig. 6-27 PID Control Functional Diagram

-104-

Selection of PID target value F131 setting mode

Setting Range:0~3 Factory Default Value: 0

0: Set by the  $\blacktriangle/\checkmark$  key on the operator panel.

Set closed-loop feed quantity according to the target value of F132.

1: Set by external voltage signal V (0~10V).

Set the target value according to external voltage signal V  $(0\sim 10V)$ .

2: Set by external current signal I  $(0\sim 20mA)$ .

Set the target value according to external current signal I (0~20mA).

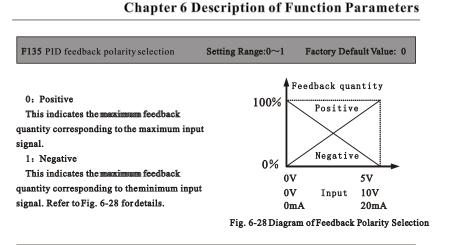
3: Set by 485 COM.

Set the target value according to 485 COM.

F132 PID target value setting Setting Range:0.00~10.00V Factory Default Value:0.0V

When PID target value setting mode selects setting by  $\blacktriangle/\checkmark$  key on the operator panel (F131=0), then this parameter is used to set the target value of PID control with "V" as its unit.

F133 Selection of feedback modes Setting Range:0~1 Factory Default Value: 0


0: External voltage signal V (0~10V) :

Select external voltage signal  $V(0\sim 10V)$  as closed-loop feedback quantity.

1: External current signalI (0~20mA) : Select external current signal I(0~20mA) as closed-loop feedback quantity.

F134 PID feedback quantity gain Setting Range:0.01~10.00 Factory Default Value:1.00

When feedback quantity is not in accord with set target value, then this parameter can be used to regulate feedback quantity signal till PID regulation meets the requirement.



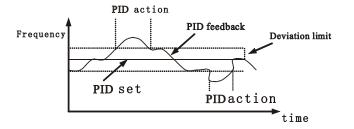
#### F136 Proportional gain (P) Setting Range:0.01~10.00 Factory Default Value:0.50

Proportional gain (P) decides response degree of output frequency to deviation. The greater the P value is, the quicker response is, but excessive value of P may result in oscillation and too low value of P may lead to response lagging.

#### F137 Integral time constant Ti Setting Range:0.0~100.0S Factory Default Value:10.0S

Integral time constant decides the proportional relation between output frequency change speed and deviation. The function of integral is to integrate the output value in accordance with deviation to compensate deviation between feedback value and set value. Too long integral time may result in slow response to external disturbance. The shorter the constant time is, the quicker the response speed is, but too short integral time may result in oscillation

F138 Differential time constant Di Setting Range:0.0~10.0S Factory Default Value:0.0S


The function of differential is to proportionate output frequency to deviation, and respond timely to abruptly changing deviation. The longer the differential time is, the faster decay of system oscillation arising from proportional action is, but too long differential time may result in oscillation. Viseversa, the shorter the differential time is, the less decay of oscillator is.

#### F139 Sampling period Setting Range:0.01~1.00S Factory Default Value:0.10S

Sampling period refers to the cycle in which the system conducts sampling over feedback quantity. PID regulator makes a calculation in each period of sampling and gets the output value of PID regulation. The longer the sampling period is, the slower the response is.

#### F140 Deviation limit Setting Range:0.0~20.0% Factory Default Value:0.0%

Deviation limit refers to the maximum value of deviation between feedback quantity and set quantity within allowable range of the system. When the difference (modulus) between feedback quantity and set quantity is lower than this set parameter value, PID control enabled. As shown in Fig. 6-29, proper setting of this parameter is of advantage to improve the stability of the output of system which needs to avoid frequent regulation though it has no high requirement on control precision.



#### Fig. 6-29 Deviation Limit Function Diagram

| F141 Sleep threshold Setting I                  | Range:F142~100.0% I   | Factory Default Value:90.0%     |
|-------------------------------------------------|-----------------------|---------------------------------|
| F142 Wake-up threshold Settin                   | ng Range:0.0%~F141    | Factory Default Value:0.0%      |
| F143 Check-out time for sleep/wake-up threshold | Setting Range:0.0~600 | 0.0S Factory Default Value:0.0S |

F141 indicates the pressure limit of water supply system in the state of sleep.

When network pressure is higher than this setting value and the frequency changing water supply system is adjusted to run at the minimum frequency, which means the actual water consumption minimizes or the water supply pressure is normal, the frequency changing water supply system will enter automatically into the state of sleep, stop and wait for wake-up.

## **Chapter 6 Description of Function Parameters**

F142 indicates the pressure limit of water supply system when it enters into working state from sleeping state.

When network pressure is lower than the setting value, which means water supply pressure decreases or water consumption increases, the frequency changing water supply system will automatically shift to the working state from sleeping state.

If water supply system conforms to the conditions for both sleep and wake-up, then the wait time for sleep or wake-up will be set by F143.

#### F144 Remain

F145 Selection of overload and overheat protection

Setting Range:0~1 Factory Default Value: 0

#### 0: Free stop

When the motor or inverter overloads, the inverter will stop its output and the motor will shutdown freely.

1: Current-limiting running

When the motor or inverter overloads, the inverter will decrease output frequency to reduce load current, output alerting signal at the same time and the alarm indicator on the operator panel will turn on.

 
 F146
 Selection of input openphase protection
 Setting Range:0~1
 Factory Default Value: 1

1: Forbidden

Input open-phase protection disabled.

1: Allowable

Input open-phase protection enabled.

death to personnel.



•The function of input open-phase protection shall be selected

cautiously after the failure cause is confirmed. Otherwise, there is the possibility of damage to the inverter, loss of property, injury or even

F147 Selection of over-voltagestall prevention function

Setting Range:0~1 Factory Default Value: 1

1: Forbidden

1: Allowable

During decelerated service of the inverter, the motor's rotation speed may be higher than the inverter's output frequency due to the influence of load inertia. At this time, the motor feedbacks energy to the inverter, which results in rise of the inverter's DC bus voltage. During deceleration, when DC bus voltage exceeds certain power level, the over-voltage stall prevention function will be enabled, which can automatically adjust the inverter's deceleration rate to avoid over-voltage tripping.

F148 Motor thermal relay protection Setting Range:30~110% Factory Default Value:100%

To perform effective overload protection of load motors with different specifications, it is necessary to setproper overload protection coefficient for each type of motor and restrict the maximum current value within the allowable output range of the inverter, as shown in Fig. 6-30.

The overload protection coefficient value of a motor is the percentage of rated current value of the load motor to rated output current value of the inverter.




Fig. 6-30 Motor Overload Protection Curve



<sup>1:</sup> Forbidden

The function of auto current-limiting is always valid in the state of acceleration or deceleration. If this function parameter is set to  $\Box 1 \Box$ , then auto current-limiting function also acts under the condition of constant speed, and the motor will be protected through input current regulation of the inverter.

## **Chapter 6 Description of Function Parameters**

| <b>F150</b> Over-current stall prevention level during acceleration   | Setting Range:40~200% | Factory Default Value:150%  |
|-----------------------------------------------------------------------|-----------------------|-----------------------------|
| <b>F151</b> Over-current stall prevention level during constant speed | Setting Range:40~200% | Factory Default Value: 150% |

This parameter defines current threshold of the inverter in the process of accelerated or constant speed running, that is, stall power level, whose setting value is in respect to the percentage of rated current of the inverter. During accelerated or constant speedrunning, once the inverter's output current exceeds over-current stall power level, the inverter will regulate its acceleration time immediately and maintain the current at this level automatically to protect the motor, as shown in Fig. 6-31.

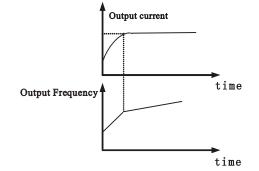



Fig. 6-31 Diagram of Automatic Current-limiting Operation

| F152   | Failure self-resetting times    | Setting Range:0~3   | Factory Default Value: 0  |
|--------|---------------------------------|---------------------|---------------------------|
| F153 I | Failure self-resetting interval | Setting Range:1~30S | Factory Default Value: 5S |

The function of failure self-resetting indicates the failure arising from load fluctuation or other causes can reset automatically in accordance with set times and interval. During the process of self-resetting, the inverter will restore operation by way of rotation speed tracing and restarting. When the self-resetting times is set to "0", this indicates self reset is disabled and failure protection should be done immediately. This function is invalid for failure protection caused by overload or over heat.



•DO take into consideration of the starting characteristic of mechanical equipment cautiously before using this function. DO NOT apply this function in case starting with load failed.

<sup>1:</sup> Allowable

#### F154 Remain

#### F155 COM local address Setting Range:0~30 Factory Default Value: 1

This parameter is used to identify the local inverter's address which is unique when an inverter communicates with other inverters or upper machines through COMport.

If this parameter is set to "0", the local inverter under linking control will act as the main station, which decides the operation of other inverters connected to it.

If this parameter is not setto "0", the local inverter will act as a secondary receiving commands and data from an upper machine or another inverter acting as the role of main station. The inverter receives only commands and data from the upper machine or the main station in accord with marked address.

#### F156 COM data format Setting Range:0~2 Factory Default Value: 0

The parameter defines data format adopted in COM protocol, and normal communication goes on only if the format is in accord with the protocol.

- 0: No parity
- 1: Even parity
- 2: Odd parity

All the data formats are set to 1-bit starting location, 8-bit data location and 1-bit stop location.

F157COM baud rate selection Setting Range:0~5 Factory Default Value: 3

This parameter is used to specify the baud rate of RS485/232 communication, and the same baud rate shall be set to all parties involved in communication.

0: 1200BPS; 1: 2400BPS; 2: 4800BPS; 3: 9600BPS;

4: 19200BPS; 4: 38400BPS.

#### F158COM linking ratio Setting Range:0.01~10.00 Factory Default Value:1.00

If local inverter is set to be controlled by master inverter and thesetting frequency of local machine is given by the master inverter, then this parameter is used to set weight coefficient of frequency instruction received by the local inverter which acts as a secondary through RS485/232 port. The actual setting frequency of local inverter is equivalent to the product of local parameter value and the frequency setting instruction value received through RS485/232 port.

## **Chapter 6 Description of Function Parameters**

F159 Parameter write-protect Setting Range:0~2 Factory Default Value: 0

This is used to set modification authority for parameters. See the detail below:

0: This indicates all the parameters are permitted to be overwritten, but some can not be overwritten when the equipment is in operation.

1: All the parameters are prohibited to be overwritten except numeric setting frequency and this parameter.

2: All the parameters are prohibited to be overwritten except this parameter.

F160 Remain

F161 Run time(S)

F162 Run time(H)

Running time "S" stands for second(s) and "H" stands for hour(s). The running time can be reviewed only and cannot be modified.

F163 Frequency power failure memory Setting Range:0~1 Factory Default Value: 1

0: No memory 1: Keep memory

This function indicates whether the running frequency regulated randomly keeps and stores memory or notafter power failure.

F164 Ventilator fan control Setting Range:0~1 Factory Default Value: 1

This function can realize control over built-in cooling fan of the inverter.

0: The fan runs continuously (independent of whether the inverter is power-on or power-off).

1: Fan-controlled running. (When the inverter starts, the cooling fan works. During shutdown, the fan keeps awatch on the state of inverter and decides to start or stop the fan in accordance with temperature.)

F165 PWM adaptive control Setting Range:0~1 Factory Default Value: 1

This function is used to control over the inverter's carrier frequency (below 10.00Hz) whether it can change automatically or not with variation of output frequency ranging from 1.0KHz to the set carrier frequency

0: Invalid 1: Valid

F166 Remain

Chapter 7 Common Problems, Anomalies and Troubleshooting

## Chapter 7 Common Problems, Anomalies and Troubleshooting

#### Chapter 7 Common Problems, Anomalies and Troubleshooting

#### 7.1 Diagnostic Trouble Codes and Troubleshooting

#### Table 7-1 Common Error Codes and Solutions

| Error<br>Codes | Error Name                                 | Probable Cause(s)                                                                                                                                                                                                                                                                                                                          | Solution(s)                                                                                                                                                                                                                                                     |  |
|----------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 00-1           | Over current<br>during<br>acceleration     | <ul> <li>①Excessively short<br/>acceleration time;</li> <li>②Excessively heavy load<br/>inertia;</li> <li>③Over torque lifting or<br/>improper V/F curve;</li> <li>④Power grid voltage below<br/>level;</li> <li>⑤Lower inverter powen;</li> <li>⑥Restart the rotating motor<br/>when instantaneous power<br/>failure occurred.</li> </ul> | ①Extend acceleration time;<br>②Reduce load inertia;<br>③Reduce torque lifting value<br>or regulate V/F curve;<br>④Check input power supply;<br>⑤Replace an inverter with<br>larger power;<br>⑥Set starting mode selection<br>F023 to rotation speed<br>tracing. |  |
| 0C-2           | Over current<br>during<br>deceleration     | ①Excessively short<br>deceleration time;<br>②Excessively heavy load<br>inertia;<br>③Lower inverter power;                                                                                                                                                                                                                                  | ①Extend deceleration time;<br>②Reduce load inertia;<br>③Replace an inverter withhigher<br>power level;                                                                                                                                                          |  |
| 0C-3           | Over current<br>while at<br>constant speed | ①Abnormal input power<br>supply;<br>②Load fluctuation;<br>⑧Lower inverter power;                                                                                                                                                                                                                                                           | <ul> <li>①Check input power supply;</li> <li>②Reduce load fluctuation;</li> <li>③Replace an inverter withhigher<br/>power level;</li> </ul>                                                                                                                     |  |
| 0U-1           | Over voltage<br>during<br>acceleration     | ①Abnormal input power<br>supply;<br>②Restart the rotating motor<br>when instantaneous power<br>failure occurred                                                                                                                                                                                                                            | OCheck input power supply:<br>@Set starting mode selection F023 to<br>rotation speed tracing.                                                                                                                                                                   |  |
| 0U-2           | Over voltage<br>during<br>deceleration     | <ul> <li>①Excessively short deceleration<br/>time;</li> <li>②Existence of load withenergy<br/>feedback;</li> <li>③Abnormal input power supply;</li> </ul>                                                                                                                                                                                  | <ul> <li>①Extend deceleration time adequately.</li> <li>②Select suitable brake assembly.</li> <li>③Check input power supply.</li> </ul>                                                                                                                         |  |
| 0U-3           | Over voltage<br>while at<br>constant speed | <ul> <li>①Abnormal input power supply.</li> <li>②Load with energy feedback.</li> <li>③Abnormal voltage detecting channel.</li> </ul>                                                                                                                                                                                                       | <ul> <li>①Check input power supply.</li> <li>②Install or reselect brakeassembly.</li> <li>③Seek service.</li> </ul>                                                                                                                                             |  |

| Error<br>Codes | Error Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Probable Cause(s) Solution(s)                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0U-4           | Over voltage<br>while at stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ①Abnormal input power supply.                                                                                                                                                                     | ①Check input power supply.                                                                                                                                                                                                                                                                                                                                                                                               |
| LU             | Under-voltage<br>during running                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>①Input power supply below<br/>level.</li> <li>②Instantaneous power<br/>failure.</li> <li>③Input power failure.</li> <li>④DC circuit loose contact.</li> <li>⑤Loose contactor.</li> </ul> | <ul> <li>① Check if power supply voltage is<br/>below level.</li> <li>② Reset the inverter and check input<br/>power supply.</li> <li>③ Check if power grid capacity is below<br/>level. Verify if power supply voltage is<br/>normal. Is there any strong surge current,<br/>open phase or short circuit?</li> <li>④ Check the main circuit or seek service.</li> <li>⑤ Check the contactor or seek service.</li> </ul> |
| LP             | Input end open-<br>phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ①Open phase of powerinput<br>end "R", "S" or "T".                                                                                                                                                 | <ul><li>①Check input voltage.</li><li>②Check installation wiring.</li></ul>                                                                                                                                                                                                                                                                                                                                              |
| Ler            | Ler Power<br>module error<br>Power<br>module error<br>Power<br>module error<br>Power<br>module error<br>Power<br>module error<br>Power<br>module error<br>@Instantaneous over current of<br>the inverter.<br>@Instantaneous over current of<br>the inverter. |                                                                                                                                                                                                   | <ul> <li>①Check wiring.</li> <li>②Improve ventilation conditions and reduce carrier frequency.</li> <li>③Clear up air channelor replace the fan.</li> <li>④Seek service.</li> <li>⑤Seek service.</li> </ul>                                                                                                                                                                                                              |
| ОН             | Radiator<br>overheat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ①Excess ambient temperature.<br>②Fan damaged.<br>③Air channel binding.                                                                                                                            | ①Lower the ambient temperature.<br>②Replace the fan.<br>③Clear up air channelor improve<br>ventilation conditions.                                                                                                                                                                                                                                                                                                       |
| 0L-1           | Inverter<br>overload                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ①Over torque lifting or<br>improper V/F curve.<br>②Excessively short<br>acceleration time<br>③Overload<br>④Power grid voltage below<br>level.                                                     | <ul> <li>①Reduce torque lifting valueor<br/>regulate V/F curve.</li> <li>②Extend acceleration time.</li> <li>③Replace an inverter withhigher<br/>power level.</li> <li>④Check power grid voltage.</li> </ul>                                                                                                                                                                                                             |

-113-

-114-

Chapter 7 Common Problems, Anomalies and Troubleshooting

Chapter 7 Common Problems, Anomalies and Troubleshooting

#### Error Probable Cause(s) Solution(s) Error Name Codes ①Over torque lifting or **(DReduce torque lifting value or** improper V/F curve. regulate V/F curve. <sup>(2)</sup>Power grid voltage below @Check power gridvoltage. level. 3Motor stalled or excessive ③Check loads and motor's status. 0L-2 Motor overload load fluctuation. ④Set proper overload protection ④Improper setting of the coefficient F148 of the motor. motor's overload protection coefficient. (I)Close of fault inputterminal (Disconnect fault input terminal of External EF of external equipment. external equipment and clear failure. equipment failure (Damaged hall elements or (1)Seek service. circuit failure. Current CE-2 2DC accessory power supply detection ②Seek service. failure. error **O**Circuit failure of patchpanel ①Seek service. Panel and control panel. CE-3 communicatio <sup>2</sup>Loose connection of (2)Check and re-connect. n failure terminals. (1)Adjust baud rate. Improper setting of baudrate. <sup>2</sup>Check the communication cable <sup>(2)</sup>Communication failure due to and take anti-interference measures. RS485 COM interference at serial port. CE-4 3 Check if the upper machine runs 3No communication signal of error normally and the communication the upper machine. cable is disconnected.

## 7.2 Anomalies and Solutions

#### Table 7-2 Anomalies and Solutions

| Anomalies                                                 | Probable Cause(s)                                                                                                                                                                                                                                                                            | Solution(s)                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No display<br>when the<br>power is ON                     | <ul> <li>Dewer grid voltage belowlevel or<br/>open phase.</li> <li>DC accessory power supply<br/>failure.</li> <li>Charging resistor damaged.</li> </ul>                                                                                                                                     | ①Check power grid voltage.<br>②Seek service.<br>③Seek service.                                                                                                                                                                                                                              |
| Power trip                                                | ①Short circuit in theinverter's<br>input side<br>②Exiguous air switching capacity.                                                                                                                                                                                                           | ①Check wiring or seekservice. ②Expand air switching capacity.                                                                                                                                                                                                                               |
| Motor<br>doesn't run                                      | <ol> <li>Incorrect wiring.</li> <li>Berror setting of operationmode.</li> <li>Overload or motor stalled.</li> </ol>                                                                                                                                                                          | <ul> <li>①Check wiring.</li> <li>②Reset the operation mode.</li> <li>③Reduce loads or regulate motor's status.</li> </ul>                                                                                                                                                                   |
| Motor<br>reverses                                         | ①Error phase sequence ofmotor<br>wiring.                                                                                                                                                                                                                                                     | ①Swap random two phases of the output<br>terminals U, Vand W.                                                                                                                                                                                                                               |
| Motor<br>acceleration/<br>deceleration<br>failed          | <ul> <li>①Improper setting of<br/>acceleration/deceleration time.</li> <li>②Under setting of over-current<br/>stall points.</li> <li>③Over-voltage stall prevention<br/>enabled.</li> <li>④Improper setting of carrier<br/>frequency or oscillation occurred.</li> <li>⑤Overload.</li> </ul> | <ul> <li>①Reset acceleration/deceleration time.</li> <li>②Increase setting value forover-current stall point.</li> <li>③Extend deceleration time orreduce load inertia.</li> <li>④Reduce carrier frequency.</li> <li>⑤Reduce load or replacean inverter with higher power level.</li> </ul> |
| Motor's speed<br>fluctuates<br>while at<br>constant speed | ①Excessive fluctuation of loads.<br>②Under setting of motor's<br>overload protection coefficient.<br>③Loose contact of frequency<br>setting potentiometer.                                                                                                                                   | <ul> <li>①Reduce load fluctuation.</li> <li>②Increase overload protection coefficient.</li> <li>③Replace the potentiometer orseek service.</li> </ul>                                                                                                                                       |

-115-

-116-

Chapter 8 Inverter Inspection and Maintenance

#### Chapter 8 Inverter Inspection and Maintenance

#### 8.1 Inspection and Maintenance

The following influences may lead to latent failure of the inverter such as ambient temperature, humidity, dust, vibration, as well as device ageing, wear and other causes of the inverter itself duringlong-period operation on industrial occasions. So it is necessary to perform daily and periodic inspections and maintenance on the inverter.

#### 8.1.1 Daily Inspection Items

| Item<br>Inspected     | Check for…                                                                                                                   | Inspection<br>Cycle | Inspection<br>Method                                          | Criteria                                                                                                                             | Measuring<br>Instrument                                                  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Operating<br>ambient  | <ul> <li>Ambient</li> <li>temperature</li> <li>Humidity, dust,</li> <li>corrosive gas, oil</li> <li>mist and etc.</li> </ul> | Daily               | <ul><li>Thermometer.</li><li>Scent.</li><li>Visual.</li></ul> | •Ambient<br>temperature<br>between -10 to<br>40°C, no-<br>condensing<br>•Humidity<br>between 20 to<br>90%, no dewor<br>special odor. | <ul><li>Thermometer</li><li>Hygrometer</li></ul>                         |
| Inverter              | <ul><li>Vibration</li><li>Heat</li><li>Noise</li></ul>                                                                       | Daily               | <ul><li>Touch the housing.</li><li>Aural.</li></ul>           | <ul> <li>Stable vibration</li> <li>Normal<br/>temperature</li> <li>No abnormal<br/>noise</li> </ul>                                  |                                                                          |
| Motor                 | <ul><li>Vibration</li><li>Heat</li><li>Noise</li></ul>                                                                       | Daily               | ●Touch the<br>housing.<br>●Aural.                             | <ul> <li>Stable vibration</li> <li>Normal<br/>temperature</li> <li>No abnormal<br/>noise</li> </ul>                                  |                                                                          |
| Electric<br>Parameter | <ul> <li>Input voltage</li> <li>Output Voltage</li> <li>Output current</li> </ul>                                            | Daily               | ●Thermometer                                                  | •Each electric<br>parameter is<br>within the rated<br>value.                                                                         | •Moving-iron<br>voltmeter<br>•Rectifier<br>voltmeter<br>•Clip-on ammeter |

#### Table 8-1 Daily Check List

Chapter 8 Inverter Inspection and Maintenance

• Make sure that only qualified personnel will perform maintenance, inspection and partreplacement.

• Wait at least 10 minutes after turning OFF the input power supply before performing maintenance or an inspection. Otherwise, there is the danger of electric shock.

Make sure to open the front panel only after the indicator on the control keypad turns OFF and verify the charge indicator at the right side of main loop terminal is OFF after the panel is opened.
Do use an insulated appliance while performing check and do not operate the equipment with wet hand(s) to avoid unexpected accidents.

•Always keep the equipment clean so that dust and other foreign matter does not enter the inverter.

•Keep electronic equipment away from moisture and oil. Dust, steel filings and other foreign matter can damage the inverter, causing unexpected accidents, so do take special care.

## 8.1.2 Periodic Inspection Items

WARNING

#### Table 8-2 Periodic Inspection Items

| Item Inspected |                       | Check for…                                                                                                | Inspection<br>Cycle | Inspection<br>Method | Criteria                                                                                |
|----------------|-----------------------|-----------------------------------------------------------------------------------------------------------|---------------------|----------------------|-----------------------------------------------------------------------------------------|
| Ma             | Overall               | <ul> <li>Is there any loose<br/>connector or terminal?</li> <li>Is there any device<br/>burnt?</li> </ul> | Regular             | ●Visual              | <ul> <li>No loose connector<br/>or loose terminal.</li> <li>No burnt device.</li> </ul> |
| in ci          | Main power<br>module  | ●Is it damaged or not?                                                                                    | Regular             | ●Visual              | ●No sign ofdamage.                                                                      |
| Main circuit   | Filter<br>capacitance | <ul><li>Is there any leakage?</li><li>Is there any inflation?</li></ul>                                   | Regular             | ●Visual              | ●No leakage.<br>●No inflation.                                                          |
|                | Contactor             | <ul><li>Is there any abnormal sound of actuation?</li><li>Is the dust cleaned?</li></ul>                  | Regular             | ●Visual<br>●Aural    | ●Normal sound<br>Clean                                                                  |

-117-

-118-

#### **Chapter 8 Inverter Inspection and Maintenance**

| Iter            | n Inspected             | Check for…                                                                          | Inspection<br>Cycle | Inspection<br>Method | Criteria                                                                       |
|-----------------|-------------------------|-------------------------------------------------------------------------------------|---------------------|----------------------|--------------------------------------------------------------------------------|
| Main circuit    | Resistor                | <ul> <li>Is there any big<br/>crack?</li> <li>Is the color<br/>abnormal?</li> </ul> | Regular             | Visual               | <ul><li>No crack.</li><li>Normal color.</li></ul>                              |
| bircuit         | Fan                     | •Is there any<br>abnormal noise or<br>vibration?                                    | Regular             | ●Audio<br>●Visual    | •Normal sound and stable vibration.                                            |
|                 | РСВ                     | ●Is the dust cleaned?                                                               | Regular             | ●Visual              | ●Neat and clean.                                                               |
| Contro          | FPC strand socket       | ●Is it loose?                                                                       | Regular             | ●Visual              | •No loose connection.                                                          |
| Control circuit | Overall                 | ●Is there any special<br>odor or discoloring?<br>●Is there any crack?               | Regular             | ●Scent or<br>audio   | <ul> <li>No odor and discoloring</li> <li>No crack, smooth surface.</li> </ul> |
| Keyl            | LED                     | ●Is LED display<br>normal?                                                          | Regular             | ●Visual              | •Normal and clear.                                                             |
| Keyboard        | Connecting cable strand | ●Is there any<br>scratch?<br>●Is it firmly<br>connected?                            | Regular             | ●Visual              | <ul><li>No scratched surface.</li><li>No loose connection.</li></ul>           |



•Do not remove or shake the device arbitrarily, nor pull out the connector during inspection. Otherwise, this may result in inverter failure or damage.

•Do not leave any inspection tool (i.e., a screwdriver…) in the machine after periodic check. Otherwise, there is the danger of damage to the inverter.

**Chapter 8 Inverter Inspection and Maintenance** 

#### 8. 2Replacement of Wearing Parts

The wearing parts of inverter mainly include cooling fan and filter electrolytic capacitor. Usually, a cooling fan's service life is 20,000~30,000 hours and an electrolytic capacitor's servicelife is 40,000~50,000 hours. User can decide when to replace these parts according to the corresponding operation time.

#### 1, Cooling Fan

It is advisory to replace the fan when abnormal noise or even vibration occurred to the fan due to bearing wear and fan blade aging. The standard replacement age is  $2 \sim 3$  years.

#### 2、Filter Electrolytic Capacitor

The performance of filter electrolytic capacitor is subject to the pulsating current of main circuit. High ambient temperature or frequent load jump may cause damage to the filter electrolytic capacitor. Generally, every 10°C rise in temperature may lead to reduction of the capacitor's service life by half (as shown in Fig. 8-1). If there is any electrolytic leakage or safety valve emission, just replace it at once. The standard replacement age for electrolytic capacitor is 4~5 years.

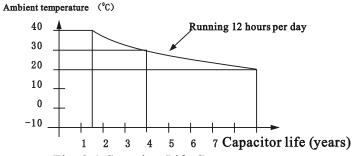





Fig. 8-1 Capacitor Life Curve 3. The above replacement duration for inverter's wearing parts is applied to the following conditions:

•Ambient Temperature: 30°C averagely all yearround.

●Load Proportion: <85%.

• Operation Time:  $\leq 12h/day$ .

If used beyond the above-mention range, the life of inverter's wearing parts will minimize.

-119-

## 8. 3 Storage of Inverter

Please pay attention to the following points if an inverter is set aside or stored for a short/long period:

• DO not keep the inverter in a place with high temperature, humidity, heavy dust, metal shavings, corrosive gas and vibration, and ensure a good ventilation.

• Long-term idle of the inverter may cause decreasing in filter characteristic of the electrolytic capacitor. So it should be recharged in half a year and the recharging period should be at least 1~2 hours. DO raise the voltage gradually by using a voltage regulator to some rated value before it is recharged. At the same time, check whether the inverter's function is normal or not, whether there is a short circuit caused by some problems. In case the above problems occur, just remove or seek service as soon as possible.

CAUTION

**Chapter 9 Outline Dimensions & Mounting Dimensions** 

## Chapter 9 Outline Dimensions & Mounting Dimensions

9.1 Inverter Outline Dimensions & Mounting Dimensions

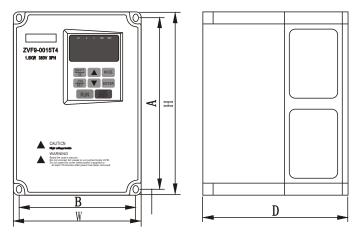



Fig. 9-1 Inverter Model A Dimensional Drawings

| Inverter Models      | Power | Dimension (MM) |     |     |     |     |     | Figure  | Gross<br>Weight |
|----------------------|-------|----------------|-----|-----|-----|-----|-----|---------|-----------------|
| Inverter Models      | (K₩)  | H              | W   | A   | В   | D   | d   |         | (kg)            |
| ZVF9-G0007T2/S2      | 0.75  |                |     |     |     |     |     |         |                 |
| ZVF9-G0015T2/S2      | 1.5   |                |     |     |     |     |     |         |                 |
| ZVF9-G0022S2         | 2.2   | 170            | 125 | 150 | 112 | 119 | ወ 5 | Fig.9-1 |                 |
| ZVF9-G0007T4         | 0.75  | 110            | 120 | 109 | 113 | 144 | Ψ.  | F1g.9-1 |                 |
| ZVF9-G0015T4/P0015T4 | 1.5   |                |     |     |     |     |     |         |                 |
| ZVF9-G0022T4/P0022T4 | 2.2   |                |     |     |     |     |     |         |                 |
| ZVF9-P0037T4         | 3.7   |                |     |     |     |     |     |         |                 |



**Chapter 9 Outline Dimensions & Mounting Dimensions** 

| Inverter Models      | Power |     | Diı | nen | Figure | Gross<br>Weight |              |         |      |
|----------------------|-------|-----|-----|-----|--------|-----------------|--------------|---------|------|
|                      | (KW)  | H   | W   | A   | В      | D               | d            |         | (kg) |
| ZVF9-G0022T2         | 2.2   |     |     |     |        |                 |              |         |      |
| ZVF9-G0037T2/S2      | 3.7   |     |     |     |        |                 |              |         |      |
| ZVF9-G0037T4/P0037T4 | 3.7   | 250 | 155 | 220 | 1/2    | 140             | <b>Φ</b> Ε Ε | Fig.9-1 | 3.5  |
| ZVF9-G0040T4/P0040T4 | 4.0   | 200 | 100 | 230 | 145    | 140             | ¥0,0         | 11g.7-1 | 3.5  |
| ZVF9-G0055T4/P0055T4 | 5.5   |     |     |     |        |                 |              |         |      |
| ZVF9-P0075T4         | 7.5   |     |     |     |        |                 |              |         |      |

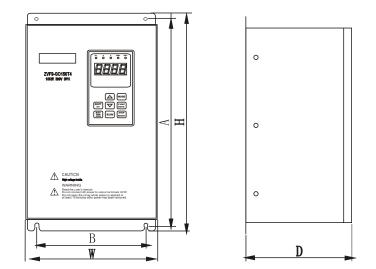



Fig. 9-2 Inverter Model B Dimensional Drawings

-123-

## Chapter 9 Outline Dimensions & Mounting Dimensions

|                      | Power |     | Dir        | nen | sion | (MM)  | )       | Figure  | Gross<br>Weigh |
|----------------------|-------|-----|------------|-----|------|-------|---------|---------|----------------|
| Inverter Models      | (K₩)  | H   | W          | A   | В    | D     | d       | rigure  | (kg)           |
| ZVF9-G0055T2         | 5.5   |     |            |     |      |       |         |         |                |
| ZVF9-G0075T4/P0075T4 | 7.5   |     |            |     |      |       |         |         |                |
| ZVF9-P0110T4         | 11    | 336 | 316        | 180 | 140  | 168   | Φ10     | Fig.9-2 |                |
| ZVF9-G0075T2         | 7.5   |     |            |     |      |       |         |         |                |
| ZVF9-G0110T2/G0110T4 | 11    | 200 | 200        | 210 | 1.00 | 200   | Φ10     |         |                |
| ZVF9-G0150T4/P0150T4 | 15    | 300 | 300        | 210 | 100  | 200   | Ψ10     | Fig.9-2 |                |
| ZVF9-P0185T4         | 18.5  |     |            |     |      |       |         |         |                |
| ZVF9-G0150T2         | 15    |     |            |     |      |       |         |         |                |
| ZVF9-G0185T2         | 18.5  |     |            |     |      |       |         |         |                |
| ZVF9-G0220T2         | 22    |     | 450        |     |      |       |         | Fig.9-2 |                |
| ZVF9-G0185T4/P0185T4 | 18.5  | 470 |            | 270 | 206  | 5 246 | Φ10     |         |                |
| ZVF9-G0220T4/P0220T4 | 22    |     |            |     |      |       |         |         |                |
| ZVF9-G0300T4/P0300T4 | 30    |     |            |     |      |       |         |         |                |
| ZVF9-P0370T4         | 37    |     |            |     |      |       |         |         |                |
| ZVF9-G0370T4         | 37    |     |            |     |      |       |         |         |                |
| ZVF9-G0450T4/P0450T4 | 45    |     | <i>co.</i> |     |      |       | <b></b> | Fig.9-2 |                |
| ZVF9-G0550T4/P0550T4 | 55    | 630 | 605        | 360 | 270  | 290   | Ψ10     |         |                |
| ZVF9-P0750T4         | 75    |     |            |     |      |       |         |         |                |
| ZVF9-G0750T4         | 75    |     |            |     |      |       |         |         |                |
| ZVF9-G0900T4/P0900T4 | 90    | 7.0 | 70.5       | 470 | 270  | 245   | A 10    | Ein C C |                |
| ZVF9-G1100T4/P1100T4 | 110   | /50 | 125        | 470 | 370  | 345   | Ψ12     | F18.9-2 |                |
| ZVF9-P1320T4         | 132   |     |            |     |      |       |         |         |                |

## Chapter 9 Outline Dimensions & Mounting Dimensions

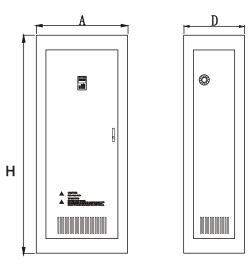



Fig. 9-3 Inverter Model B Dimensional Drawings

|                      | Power |      | Dir | nens | Figure | Gross<br>Weight |   |         |      |
|----------------------|-------|------|-----|------|--------|-----------------|---|---------|------|
| Inverter Models      | (KW)  | H    | W   | A    | В      | D               | d |         | (kg) |
| ZVF9-G1320T4         | 132   |      |     |      |        |                 |   |         |      |
| ZVF9-G1600T4/P1600T4 | 160   |      |     |      |        |                 |   |         |      |
| ZVF9-G1850T4/P1850T4 | 185   | 1270 |     | 574  |        | 380             |   | Fig.9-3 |      |
| ZVF9-P2000T4         | 200   |      |     |      |        |                 |   | _       |      |
| ZVF9-G2000T4         | 200   |      |     |      |        |                 |   |         |      |
| ZVF9-G2200T4/P2200T4 | 220   |      |     |      |        |                 |   | _       |      |
| ZVF9-G2500T4/P2500T4 | 250   | 1700 |     | 710  |        | 410             |   | Fig.9-3 |      |
| ZVF9-G2800T4/P2800T4 | 280   | 1,00 |     | /10  |        | 410             |   |         |      |
| ZVF9-P3150T4         | 315   |      |     |      |        |                 |   |         |      |

-125-

**Chapter 9 Outline Dimensions & Mounting Dimensions** 

17

14

9.2 Operator Panel Outline Dimensions & Mounting Dimensions

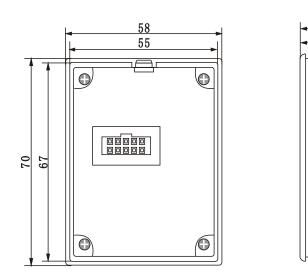



Fig. 9-4 ZR01 Operator Panel Dimensional Drawings

When ZR01 operator panel needs an outlet installation, an extra operator panel mounting shall be used.
The Mounting dimension for mounting hole location shall be 60 (width)×72 (height).

**Chapter 9 Outline Dimensions & Mounting Dimensions** 





•When ZR02 operator panel needs an outlet installation, the mounting dimension for mounting hole location shall be 69 (width)×117 (height).

Tips



TIPS

**Chapter 10 Quality Warranty** 

## Chapter 10 Quality Warranty

#### 10.1Inverter Quality Warranty

1. Warranty Period UnderNormal Conditions

• We provide guarantees for repair, replacement and return of the purchase in 1 month from the date of use.

• We provide guarantees for repair and replacement in 3 months from the date of use.

• We provide guarantee for repair in 12 months from the date of use.

2. If the date of use can not be verified, then the warranty period shall be 18 months from the date of manufacture. Service exceeding the warranty period shall be charged to the purchaser. The purchaser enjoys life-long paid service whenever and wherever he uses an inverter made in our company.

3. Service in the following cases, even within the warranty period, shall be charged to the purchaser:

• Damage caused by mal-operation in violation of this manual;

• Damage caused by improper use of an inverter that is off technical standard and requirement;

• Malfunction or damage caused by fire, earthquake, flood, abnormal input voltage or other natural disasters;

• Artificial damage caused by unauthorized repair or renovation;

• Induced failure or aging of the device due to poor ambient;

• Delayed or unsatisfied payment in violation of purchase appointment;

• Unidentifiable nameplate, mark and date of manufacture;

• Malfunction or damage caused by improper transit or storage after purchase;

• Fail to give an objective description on the use of installation, wiring, operation, maintenance or else;

• Defective products should be sent to us for repair, replacement and return, which can be proceeded only after verifying the burden of liability.

4. In case there is any quality problem or accident, we merely promise to bear the abovementioned responsibilities. If a user needs more guarantees for liabilities, please assure on the insurance company voluntarily.

-128-

#### **Appendix 1 Optional Parts**

#### **Appendix 1 Optional Parts**

## **Appendix 1 Optional Parts**

All the optional parts can be ordered for with us if needed.

## 1. Brake Assembly

Tips

The brake assembly consists of two parts: braking unit and braking resistor. It is necessary to install a brake assembly on the occasion that quick stop is required though there is a heavy potential load (e.g., elevator) or inertia load.

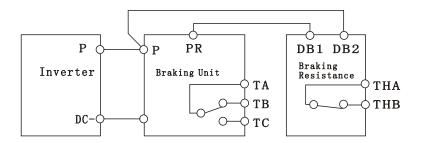



Fig. Appendix 1-1 Brake Assembly Wiring Diagram

ZVF9-G0150T4 and the machine type under this model number provide built-in braking units in the machine. If the braking torque provided by internal braking assembly is not enough, then an external braking resistor can be fitted.

When installing abrake assembly, DO take into consideration of the safety of surrounding ambient. For detailed parameters and introduction to the function, please refer to Brake Assembly User's Manual.

#### Table Appendix 1-1 Recommended Brake Assembly Matching Specifications

| Inverter |           | Brakin   | gUnit    | BrakingResistance            |                           |          |  |  |  |  |
|----------|-----------|----------|----------|------------------------------|---------------------------|----------|--|--|--|--|
| Voltage  | Motor(k₩) | Model    | Quantity | Recommended resistance value | Resistor<br>specification | Quantity |  |  |  |  |
|          | 0.75      | Built-in |          | 80₩200Ω                      | 80₩200Ω                   | 1        |  |  |  |  |
| 220V     | 1.5       | Built-in |          | 160₩100Ω                     | 160₩100Ω                  | 1        |  |  |  |  |
| 2200     | 2.2       | Built-in |          | 300₩70Ω                      | 300₩70Ω                   | 1        |  |  |  |  |
|          | 3.7       | Built-in |          | 400₩40Ω                      | 400₩40Ω                   | 1        |  |  |  |  |
|          | 0.75      | Built-in |          | 80₩750Ω                      | 80₩750Ω                   | 1        |  |  |  |  |
|          | 1.5       | Built-in |          | 160₩400Ω                     | 160₩400Ω                  | 1        |  |  |  |  |
|          | 2.2       | Built-in |          | 300₩2350Ω                    | 300₩250Ω                  | 1        |  |  |  |  |
|          | 3.7       | Built-in |          | 400₩150Ω                     | 400₩150Ω                  | 1        |  |  |  |  |
|          | 4.0       | Built-in |          | 400₩150Ω                     | 400₩150Ω                  | 1        |  |  |  |  |
|          | 5.5       | Built-in |          | 600₩100Ω                     | 600₩100Ω                  | 1        |  |  |  |  |
|          | 7.5       | Built-in |          | 800₩75Ω                      | 800₩75Ω                   | 1        |  |  |  |  |
| 380V     | 11        | Built-in |          | 1000₩50Ω                     | 1000₩50Ω                  | 1        |  |  |  |  |
|          | 15        | Built-in |          | 1500₩40Ω                     | 1500₩40Ω                  | 1        |  |  |  |  |
|          | 18.5      | 4030     | 1        | 2500₩35Ω                     | 2500₩35Ω                  | 1        |  |  |  |  |
|          | 22        | 4030     | 1        | 3000₩27.2Ω                   | 1500₩13.6Ω                | 2        |  |  |  |  |
|          | 30        | 4030     | 1        | 5000₩19.2Ω                   | 2500₩9.6Ω                 | 2        |  |  |  |  |
|          | 37        | 4045     | 1        | 6000W16Ω                     | 1500₩5Ω                   | 4        |  |  |  |  |
|          | 45        | 4045     | 1        | 9600₩13.6Ω                   | 1200₩6.8Ω                 | 8        |  |  |  |  |
|          | 55        | 4030     | 2        | 12000₩10Ω                    | 1500₩5Ω                   | 8        |  |  |  |  |
|          | 75        | 4045     | 2        | 19200₩6.8Ω                   | 1200₩6.8Ω                 | 16       |  |  |  |  |

-129-

Appendix 2 EMI Prevention

#### **Appendix 1 Optional Parts**

#### 2. Remote-operated adapter and extended cable

There are two selection modes for remote operation on ZVF9 inverter. If it is operated at shortrange ( $\leq 15m$ ), just extend the shielding cable directly and connect it to the operator panel. The company can provide a range of extended shielding cables with different specifications such as 1m, 1.5m, 2m, 5m and 10m. If there is any special requirement on cable length, just place an order with the company.

DO disconnect the power when performing a remote-operated wiring.

Installation Procedure:

WARNING

Proceed in accordance with the methods described in Clause 3.2.2 in this manual.

#### 3, Serial Communication

The standard machine type of ZVF9 inverter does not provide RS232 and RS485 communication function. User shall mark out the function at the time of order. The control terminals of standard RS232 and RS485 communication interface may connect to RS232 or RS485 communication cable to realize network control or ratio interlocking control.

RS232 and RS485 serial communication protocol for ZVF9 inverter can be operated under Windows98/2000. Other monitoring software for this series, featured by friendly man-machine operation interface, can easily realize networking operation and perform monitoring and other functions of the inverter. Please contact the service center of this company or its agents if it is needed.

### Appendix 2 EMC Prevention

#### Appendix Table 1: Inverter System EMC Prevention

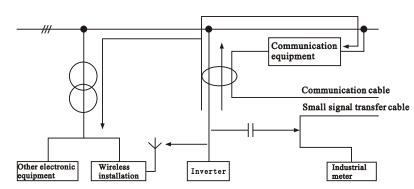
The electromagnetic environment is very complicated in industrial occasions. Besides, the inverter's working principle also decides that EMC exists in the inverter itself. So it is very important to solve EMC problems effectively to ensure reliable running of the system in such a comprehensive condition. In this chapter, we give a research on EMC and provide corresponding solutions to EMC, in hope of being helpfulto you to solve practical problems.

#### (1) EMI Types and propagation mode

| Туре                        | Propagation mode                                                           |
|-----------------------------|----------------------------------------------------------------------------|
| Conducted<br>interference A | DCommon-base impedance coupling<br><b>Common source impedance coupling</b> |
| Radiated<br>interference B: | ①Near field coupling<br>②Farness field coupling                            |
| Induction<br>interference C | ①Magnetic field <b>coupling</b> ②Magnetic field induction                  |

#### (2) Inverter System EMC Solutions

Power supply input cable:

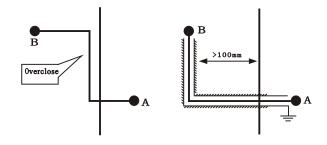

① The distortion of power grid waveform caused by superimposed higher harmonic current arisen out of nonlinear rectifier circuit to source impedance may lead to interference over other electrical equipment under the same power grid. This kind of interference is named type A② interference.

(2) The power current and higher harmonic current brings in alternating electromagnetic field around the circuit cable, which results in electric field coupling and magnetic flux inductive coupling to the nearer parallel cable such as the communication cable, small signal transmission cable and etc. This kind of interference is named type C(1) or C(2) interference.

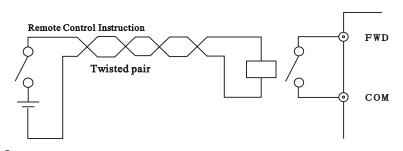
(3) Due to antenna effect of the cable's shielding layer, interference may be produced over external wireless installation. This kind of interference is named type B① interference.

-131-





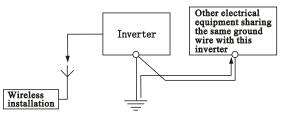




#### Solutions:

① This type of interference can be suppressed by installing an EMC power supply filter or isolation transformer in the power supply inputside.

<sup>(2)</sup>This type of interference can be suppressed through well ordered wiring or shielding. For example, the signal cable may adopt shielded wire and the shielding layer shall be firmly grounded to reduce magnetic flux inductive coupling and electric field coupling. The signal cable should be at least 100mm away from the power cable. If the signal wire and the power cable intersect, please intersect orthogonally. Generally speaking, it is not advisory to use an overlong signal wire. If the operation instruction is far from the inverter, then it is recommended to use an intermediate relay to have a control over it, as shown in the figure below.








③ This type of interference can be suppressed by a good earth ground of the cable's shielding layer or by installing a wireless noise filter (i.e., a ferrite bead). Inverter Body:

①The leakage of high frequency electromagnetic field (EMF) produced by the high speed switch of the power elements inside the inverter through the inverter's metal slit can result in radiated interference over external wireless installation. This kind of interference is named type B① interference.

<sup>(2)</sup>When other electrical equipment (including other inverters) share the same ground with this inverter, then type A<sup>(1)</sup> interference will be produced over other equipment if the ground wire impedance is high at this time.



Propagation Diagram of Inverter Body's Interference over External Equipment Solutions:

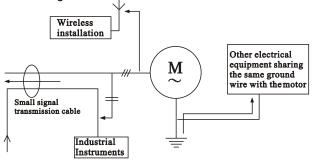
①Type Binterference can be suppressed by a good earth ground of the inverter housing or by installing the inverter in a well-shielded metal cabinet. Generally, radiated interference produced by the inverter body has less influence on the external equipment.

②It is recommended that other equipment had better connect to the ground through an independent ground wire and share the same or different point beyond the earth electrode with the inverter, as shown in the figure below.

-134-

Appendix 2 EMI Prevention

Appendix 2 EMI Prevention


# Inverter Other equipment

#### Motor Cable:

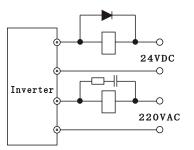
(1) The electromagnetic field (EMF) caused by fundamental current has weaker effect on electric field coupling and magnetic flux inductive coupling of the parallel cable. While the EMF produced by the higher harmonic current has stronger effect on electric field coupling.

#### 2 Radiated interference

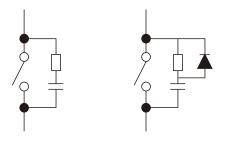
③ Due to the existence of distributed capacity, there is high frequency earth leakage current and interphase leakage current in the cable, which may lead to malfunction of some leakage protection devices such as circuit breaker, relay and other equipment. DO attach importance to these things.



Propagation Diagram of Motor Cable's Interference over External Equipment Solutions:


(1) The basic solutions are the same with the defense of electromagnetic countermeasures of a power cable.

② Install an output wireless noise filter and keep the sensitive equipment away from the motor cable; or the motor cable adopts a well grounded shielded cable and insert this cable in a metal pipe.


③ Use an insensitive leakage protection breaker for the inverter system only; reduce carrier frequency of the inverter; or use an AC (output) reactor to solve this kind of problems.

Relay, contactor and other electromechanical elements:

Instantaneous current and voltage surge will be caused by the close and open of the switch devices such as relay, contactor and etc, which may result in discharging radiation and conductive surge noise. This instantaneous noise must be prevented when designing the peripheral circuit of the inverter, as shown in the figure below.



As for a 24VDC controlled relay, a shunt winding continuous current diode should be inserted at both ends of the coil and pay attention to the polarity of diode. As for a 220VAC controlled contactor, an over-voltage suppressor should be mounted at both ends of the coil (i.e., RCnetwork). Also, the protection of switch contact can not be ignored. This can be realized by forming a shunt winding RC or RCD buffered network, as shown in the figure below.



| No. | Name                     | Figure Symbol  | No. Name |                          | Figure Symbol |
|-----|--------------------------|----------------|----------|--------------------------|---------------|
| 1   | AC motor                 | (M)            | 2        | Frequency meter          | Hz            |
| 3   | Wattmeter                | W              | 4        | Signal light             | $\otimes$     |
| 5   | Ammeter                  | A              | 6        | Voltmeter                | $\bigcirc$    |
| 7   | Main circuit<br>terminal | 0              | 8        | Control loop<br>terminal | $\odot$       |
| 9   | Contactor                | <u><u></u></u> | 10       | Circuit breaker          |               |
| 11  | Thermal relay            | ¢,             | 12       | Relay coil               | -[]-          |
| 13  | Reactor                  | لسا            | 14       | Operational amplifier    | $\square$     |
| 15  | Diode                    |                | 16       | Optoelectronic coupler   |               |
| 17  | Switch                   |                | 18       | DC power supply          |               |
| 19  | Non-polar<br>capacitor   | ±              | 20       | Polar capacitor          | <u>+</u> ⊥    |
| 21  | Triode (NPN type)        | $\prec$        | 22       | Triode (PNPtype)         | -K            |
| 23  | Discharge tube           |                | 24       | Piezo-resistor           | 4             |
| 25  | Resistor                 | Ļ              | 26       | Potentiometer            | ↓             |

## Attached Table II: Conventional Symbols Illustration

-137-

## Appendix 3 User's Parameter Amendment Record

## Appendix 3 User's Parameter Amendment Record

Table Appendix 3-1 User's Parameter Amendment Record

| Function<br>Code | Function Name                                     | Factory<br>Default<br>Setting | User<br>Setting | Function<br>Code | Function Name                                              | Factory<br>Default<br>Setting | User<br>Setting |
|------------------|---------------------------------------------------|-------------------------------|-----------------|------------------|------------------------------------------------------------|-------------------------------|-----------------|
| F000             | Software Versionnumber                            |                               |                 | F029             | Halt mode                                                  | 0                             |                 |
| F001             | Inverter Specification Disphy                     |                               |                 | F030             | Stop dc braking starting<br>Frequency                      | 3.00 Hz                       |                 |
| F002             | Parameter Initiating/ Removing<br>Failure Record  |                               |                 | F031             | Stop DC braking voltage                                    | 0%                            |                 |
| F003             | Remain                                            |                               |                 | F032             | Stop DC braking period                                     | 0.0S                          |                 |
| F004             | Remain                                            |                               |                 | F033             | Remain                                                     |                               |                 |
| F005             | Remain                                            |                               |                 | F034             | Selection of Power On<br>display items                     | 0                             |                 |
| F006             | Remain                                            |                               |                 | F035             | Remain                                                     |                               |                 |
| F007             | Remain                                            |                               |                 | F036             | Remain                                                     |                               |                 |
| F008             | Remain                                            | 50.00Hz                       |                 | F037             | Display coefficient<br>of linear speed                     | 1.0                           |                 |
| F009             | Selection of frequency setting<br>manner          | 1                             |                 | F038             | Display coefficient of<br>closed-loop control              | 1.000                         |                 |
| F010             | Selection of operation control mode               | 0                             |                 | F039             | Selection of REV/JOG<br>key function                       | 1                             |                 |
| F011             | Selection of motor rotating<br>direction          | 0                             |                 | F040             | Two-wire/Three-<br>wire running control                    | 0                             |                 |
| F012             | Maximum output frequency                          | 50Hz                          |                 | F041             | Accelerating period 2                                      | In accordance<br>with         |                 |
| F013             | Selection of V/F curvemode                        | 0                             |                 | F042             | Decelerating period 2                                      | with<br>specifications        |                 |
| F014             | Selection of acceleration<br>/deceleration manner | 0                             |                 | F043             | Remain                                                     |                               |                 |
| F015             | Accelerating period 1                             | In accordance<br>with         |                 | F044             | Remain                                                     |                               |                 |
| F016             | Decelerating period 1                             | specifications                |                 | F045             | Selection of automatic<br>energy-saving operation          | 0                             |                 |
| F017             | Upper limit of frequency                          | 50.00H                        |                 | F046             | Setting of slip compensation                               | 0.0%                          |                 |
| F018             | Lower limit of frequency                          | 0.00Hz                        |                 | F047             | Selection of AVR function                                  | 0                             |                 |
| F019             | Remain                                            |                               |                 | F048             | Torque lifting                                             | In accordance<br>with         |                 |
| F020             | Jog running frequency                             | 10.00Hz                       |                 | F049             | Carrier frequency                                          | specifications                |                 |
| F021             | Jog accelerating period                           | 10. OS                        |                 | F050             | Leap frequency 1                                           | 0.00 Hz                       |                 |
| F022             | Jog decelerating period                           | 10. OS                        |                 | F051             | Range of leap frequency 1                                  | 0.00Hz                        |                 |
| F023             | Selection of starting mode                        | 0                             |                 | F052             | Leap frequency 2                                           | 0.00Hz                        |                 |
| F024             | Starting frequency                                | 0.00Hz                        |                 | F053             | Range of leap frequency 2                                  | 0.00Hz                        |                 |
| F025             | Maintaining period of<br>starting frequency       | 0.0S                          |                 | F054             | Reference frequency of<br>acceleration/deceleration period | 50.00                         |                 |
| F026             | Starting DC braking voltage                       | 0%                            |                 | F055             | Selection of restart after<br>instant blackout             | 0                             |                 |
| F027             | Starting DC braking period                        | 0.0S                          |                 | F056             | Wait time forrestart<br>after instant blackout             | 1.0S                          |                 |
| F028             | FWD/REV dead time                                 | 2. 0S                         |                 | F057             | Frequency arrival checkout<br>range (FAR)                  | 5.00Hz                        |                 |

| Function<br>Code | Function Name                                                                             | Factory<br>Default<br>Setting | User<br>Setting | Function<br>Code | Function Name                                                | Factory<br>Default<br>Setting | User<br>Settin |
|------------------|-------------------------------------------------------------------------------------------|-------------------------------|-----------------|------------------|--------------------------------------------------------------|-------------------------------|----------------|
| F058             | Setting of FDT level                                                                      | 10.00H                        |                 | F090             | First Stage SpeedAdd-Subtract<br>Time                        | 20.0S                         |                |
| F059             | FDT lagged value                                                                          | 1.00H                         |                 | F091             | Running time at thesecond<br>stage speed                     | 20. OS                        |                |
| F060             | Overload pre-alarm level                                                                  | 100%                          |                 | F092             | Selection of running direction<br>at the second stage speed  | 0                             |                |
| F061             | Overload pre-alarm action<br>period                                                       | 1.0S                          |                 | F093             | Second Stage SpeedAdd-<br>Subtract Time                      | 20. OS                        |                |
| F062-063         | Remain                                                                                    |                               |                 | F094             | Third stage speed running time                               | 20. OS                        |                |
| F064             | Lower limit of analog<br>voltage input                                                    | 0. OV                         |                 | F095             | Selection of running direction<br>at the third stage speed   | 0                             |                |
| F065             | Upper limit of analog<br>voltage input                                                    | 10.0V                         |                 | F096             | Third Stage SpeedAdd-Subtract<br>Time                        | 20. OS                        |                |
| F066             | Lower limit of analog<br>current I                                                        | 4. OmA                        |                 | F097             | fourth stage speed running time                              | 20. OS                        |                |
| F067             | Upper limit of analog<br>current I                                                        | 20. OmA                       |                 | F098             | Selection of running direction<br>at the fourth stage speed  | 0                             |                |
| F068             | Bipolarity zero offset of<br>analog input                                                 | 0%                            |                 | F099             | Fourth Stage Speed Add-<br>Subtract Time                     | 20. 0S                        |                |
| F069             | Biasing direction of the<br>frequency corresponding to                                    | 0                             |                 | F100             | Fifth stage speed running time                               | 20. 0S                        |                |
|                  | the lower limit of analog input                                                           |                               |                 | F101             | Selection of running direction<br>at the first stage speed   | 0                             |                |
| F070             | Biasing direction of the<br>frequency corresponding to the<br>Upper limit of analog input | 0                             |                 | F102             | Fifth Stage SpeedAdd-<br>Subtract Time                       | 20. 0S                        |                |
| F071             | Corresponding set frequency of<br>Min. analog input                                       | 0.00Hz                        |                 | F103             | Sixth stage speed running time                               | 20.0S                         |                |
| F072             | Corresponding set frequency of<br>Max. analog input                                       | 50.00H                        |                 | F104             | Selection of running direction<br>at the sixth stage speed   | 0                             |                |
| F073             | Delay period of analog<br>input signal                                                    | 0.5S                          |                 | F105             | Sixth Stage SpeedAdd-<br>Subtract Time                       | 20. OS                        |                |
| F074             | 10V Analog MeterOutput AM                                                                 | 1                             |                 | F106             | Seventh stage speed running<br>time                          | 20. OS                        |                |
| F075             | Analog Meter OutputAM<br>Proportional Gain                                                | 100%                          |                 | F107             | Selection of running direction<br>at the seventh stage speed | 0                             |                |
| F076             | Analog Meter OutputAM Bias                                                                | 0. OV                         |                 | F108             | Seventh Stage SpeedAdd-<br>Subtract Time                     | 20. OS                        |                |
| F077             | Analog input assembly setting                                                             | 0                             |                 | F109             | Remain                                                       |                               |                |
| F078             | Remain                                                                                    |                               |                 | F110             | Remain                                                       |                               |                |
| F079             | Remain                                                                                    |                               |                 | F111             | Function selection of multi-<br>function input terminal X1   | 0                             |                |
| F080             | Selection of programmable<br>multistage speed running                                     | 0                             |                 | F112             | Function selection of multi-<br>function input terminal X2   | 0                             |                |
| F081             | Output frequency at the<br>first stage speed                                              | 5.00Hz                        |                 | F113             | Function selection of multi-<br>function input terminal X3   | 0                             |                |
| F082             | Output frequency at the second stage speed                                                | 10.00Hz                       |                 | F114             | Function selection of multi-<br>function input terminal X4   | 0                             |                |
| F083             | Output frequency at the<br>third stage speed                                              | 20.00Hz                       |                 | F115             | Function selection of multi-<br>function input terminal X5   | 0                             |                |
| F084             | Output frequency at the<br>fourth stage speed                                             | 30.00Hz                       |                 | F116             | Function selection of multi-<br>function input terminal X6   | 0                             |                |
| F085             | Output frequency at the<br>fifth stage speed                                              | 40.00Hz                       |                 | F117             | Function selection of collector<br>output terminal Y1        | 0                             |                |
| F086             | Output frequency at the sixth stage speed                                                 | 45.00Hz                       |                 | F118             | Function selection of collector<br>output terminal Y2        | 0                             |                |
| F087             | Output frequency at the seventh stage speed                                               | 50.00Hz                       |                 | F119             | Remain                                                       |                               |                |
| F088             | First stage speed running<br>time                                                         | 20. OS                        |                 | F120             | Remain                                                       |                               |                |
| F089             | Selection of running direction<br>at the first stage speed                                | 0                             |                 | F121             | Selection of counting modes                                  | 0                             |                |

-138-

-139-

#### Appendix 3 User's Parameter Amendment Record

| Function<br>Code | Function Name                                | Factory<br>Default<br>Setting | User<br>Setting | Function<br>Code | i unetion runne                                       | Factory<br>Default<br>Setting | User<br>Setting |
|------------------|----------------------------------------------|-------------------------------|-----------------|------------------|-------------------------------------------------------|-------------------------------|-----------------|
| F122             | Counting value                               | 1                             |                 | F145             | Overload & overheat<br>protection method              | 1                             |                 |
| F123             | Counting coefficient                         | 1                             |                 | F146             | Inverter input open-<br>phase protection              | 1                             |                 |
| F124             | Count to option processing                   | 0                             |                 | F147             | Over-voltage stall proof<br>function                  | 1                             |                 |
| F125             | Remain                                       |                               |                 | F148             | Motor thermal relay<br>protection coefficient         | 100%                          |                 |
| F126             | Motor rated frequency                        | 50.00Hz                       |                 | F149             | Selection of automatic curre nt-<br>limiting function | 1                             |                 |
| F127             | Motor rated voltage                          | In accordance                 |                 | F150             | Acceleration over-current stall<br>proof level        | 150%                          |                 |
| F128             | Motor rated current                          | with<br>specifications        |                 | F151             | Constant speed over-<br>current stall proof level     | 150%                          |                 |
| F129             | Motor rated rotating speed                   | 1450                          |                 | F152             | Failure self-resetting times                          | 0                             |                 |
| F130             | PID action selection                         | 0. 0S                         |                 | F153             | Failure self-resetting interval                       | 5S                            |                 |
| F131             | Selection of PID targetvalue<br>setting mode | 0.10S                         |                 | F154             | Remain                                                |                               |                 |
| F132             | PID target value setting                     | 0.0%                          |                 | F155             | COM address                                           | 1                             |                 |
| F133             | PID Selection of feedback<br>conditions      | 0.00                          |                 | F156             | COM data form                                         | 0                             |                 |
| F134             | PID feedback flow gain                       | 0.01                          |                 | F157             | COM baud rate                                         | 3                             |                 |
| F135             | PID feedback polarity selection              | 0.0S                          |                 | F158             | Selection of COM linking ratio                        | 1.00                          |                 |
| F136             | Proportional gain (P)                        | 0.5                           |                 | F159             | Selection of parameter<br>protection                  | 0                             |                 |
| F137             | Integral time constant TI                    | 10.0S                         |                 | F160             | Remain                                                |                               |                 |
| F138             | Differential time constant DI                | 0. 0S                         |                 | F161             | Actual running time (S)                               |                               |                 |
| F139             | Sampling period                              | 0.1S                          |                 | F162             | Actual running time (H)                               |                               |                 |
| F140             | Deviation limit                              | 0.0%                          |                 | F163             | Frequency power failure<br>memory                     | 0                             |                 |
| F141             | Sleep threshold                              | 90.0%                         |                 | F164             | Ventilator fancontrol                                 | 0                             |                 |
| F142             | Revoke threshold                             | 0.0%                          |                 | F165             | PWM adaptive control                                  | 0                             |                 |
| F143             | Check-out time for<br>sleep/revoke threshold | 0.0S                          |                 | F166             |                                                       |                               |                 |
| F144             | Remain                                       |                               |                 |                  |                                                       |                               |                 |

## Appendix 4 User's Warranty

Appendix 4 Warranty

## User's Details

| Name of<br>Distributor  | Date of<br>Purchasing            |  |
|-------------------------|----------------------------------|--|
| Inverter<br>Model(s)    | Identification<br>Number         |  |
| Name of<br>Equipment    | Power Capability<br>of the Motor |  |
| Date of<br>Installation | Date of Use                      |  |

## Maintenance Record

| Failure Cause:       |                       |
|----------------------|-----------------------|
| Settlement:          |                       |
|                      |                       |
| Date of Maintenance: | Serviceman Signature: |
| Failure Cause:       |                       |
| Settlement:          |                       |
|                      |                       |
| Date of Maintenance: | Serviceman Signiture: |



This copy is for the holder (user) only.

-141-

#### Appendix 4 Warranty

## Inverter User's Warranty

## User's Details

| User's Work<br>Unit     | Tel                              |  |
|-------------------------|----------------------------------|--|
| Add.                    | Post Code                        |  |
| Contact Person          | Department                       |  |
| Name of<br>Distributor  | ADD/TEL                          |  |
| Date of<br>Purchasing   | Bill Number                      |  |
| Inverter<br>Model(s)    | Identification<br>Number         |  |
| Name of<br>Equipment    | Power Capability<br>of the Motor |  |
| Date of<br>Installation | Date of Use                      |  |

Description of Use:

X

Tips

Description of Parameter Amendment:

• User shall fill it out based on the facts with care and return it tous as soon as possible, so that we could serve you better to avoid inconvenience or loss caused by your improper installation or error use.

-142-